Dalla dinamica alla normativa sismica

Prescrizioni della normativa

Caltagirone, 6 aprile 2004 Bruno Biondi

Precedente norma italiana (D.M. 16/1/96)

Verifiche con T.A.

Carichi verticali: $g_k + q_k$

Forze orizzontali:

Masse W $g_k + s q_k$

Forze per zone a media $0.07 \times W$

. sismicità

Si noti che il calcolo sismico $g+q\pm F$ racchiude anche il calcolo per soli carichi verticali

Precedente norma italiana (D.M. 16/1/96)

Verifiche con T.A. con S.L.U.

Carichi verticali: $g_k + q_k$ 1.4 $g_k + 1.5 q_k$

Forze orizzontali:

Masse W $g_k + s q_k$ $g_k + s q_k$

Forze per zone a media $0.07 \times W$ $1.5 \times 0.07 \times W$

sismicità

Il passaggio a S.L.U. si è basato sull'idea che:

Verifiche TA \cong Verifiche SLU con car.soll. x 1.5

Precedente norma italiana (D.M. 16/1/96)

Questo è abbastanza vero per le travi:

$$M_{\text{max},TA} \cong M_{\text{Rd},\text{SLU}}$$

Non è vero per i pilastri:

per N assegnato, $M_{max,TA} < M_{Rd,SLU}$

Il passaggio a S.L.U. si è basato sull'idea che:

Verifiche TA \cong Verifiche SLU con car.soll. x 1.5

Nuova norma italiana (Ordinanza 3274)

Verifiche con S.L.U. solo carichi carichi verticali

verticali più sisma

Carichi verticali: 1.4 $g_k + 1.5 q_k$ $g_k + \psi_2 q_k$

Forze orizzontali:

Masse W --- $g_k + \phi \psi_2 q_k$

Forze per zona sismica 2, --- 0.134 x W alta duttilità, suolo B

Si noti che il calcolo sismico $g+q\pm F$ non racchiude il calcolo per soli carichi verticali

Ordinanza 3274, punto 3.3

Confronto (carichi verticali più sisma)

Verifiche SLU D.M. 16/1/96 Ordinanza 3274

Carichi verticali: 1.4 $g_k + 1.5 q_k$ $g_k + \psi_2 q_k$

Forze orizzontali:

Masse W $g_k + s q_k$

Forze per zone a media 0.105 x W 0.134 x W sismicità, ecc.

Notare: Carichi Masse Forze

verticali quasi orizzontali minori invariate maggiori

Valutazione delle masse per SLU

$$W = g_k + \varphi \psi_2 q_k$$

 $\psi_2 q_k$ = valore quasi permanente del carico variabile

	Ψ2
Abitazioni, uffici non aperti al pubblico	0.30
Scuole, negozi, autorimesse	0.60
Tetti, coperture con neve	0.20
Magazzini, archivi, scale	0.80
Vento	0

Nota: alcuni valori sono diversi da quelli usati in assenza di sisma

Valutazione delle masse per SLU

$$W = g_k + \varphi \psi_2 q_k$$

φ tiene conto della probabilità di avere i carichi quasi permanenti a tutti i piani

Uso non correlato	Piani con uso correlato	Archivi
1.0		
0.5		
	0.8	
	0.8	
	0.8	
		1.0
0.5		

Calcolo per SLU e per SLD

SLU

SLD

Carichi verticali:

 $g_k + \psi_2 q_k$

 $g_k + \psi_0 q_k$

Forze orizzontali:

Masse W

 $g_k + \phi \psi_2 q_k$ $g_k + \phi \psi_0 q_k$

Forze

spettro

spettro

di progetto (con q)

elastico $con a_a/2.5$

Ordinanza 3274, punto 3.3

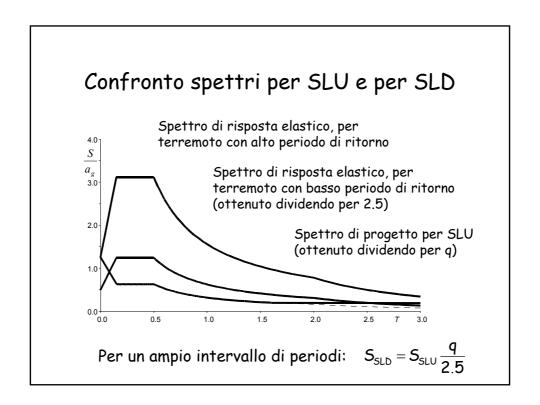
Valutazione delle masse per SLD

 $W = g_k + \varphi \psi_0 q_k$

 $\psi_0 q_k$ = valore di combinazione del carico variabile

	Ψ2
Abitazioni, uffici non aperti al pubblico	0.70
Scuole, negozi, autorimesse	0.70
Tetti, coperture con neve	0.70
Magazzini, archivi, scale	1.00
Vento	0

Nota: alcuni valori sono diversi da quelli usati in assenza di sisma


Confronto masse per SLU e per SLD

La differenza riguarda solo i carichi variabili (moltiplicati per ψ_2 o per ψ_0)

Poiché il grosso dei carichi è in genere costituito dai carichi permanenti, alla fine le differenze sono minime:

Masse per SLD \cong 1.03 x Masse per SLU

Vale la pena essere tanto precisi?

Verifica per SLD

Gli spostamenti calcolati per SLD devono essere inferiori ai limiti indicati nella norma.

In particolare:

Tamponamenti collegati rigidamente, che possono interferire con la deformabilità della struttura $d_r < 0.005 h$

Tamponamenti collegati elasticamente alla struttura d_r < 0.0075 h

Ordinanza 3274, punto 4.11.2

Considerazioni su SLU e SLD

Data:

- la piccola differenza tra masse per SLU e SLD
- la proporzionalità degli spettri (per un ampio intervallo di periodi)

si potrebbe effettuare il calcolo solo per SLU ed utilizzare gli spostamenti così trovati, amplificandoli del rapporto q/2.5

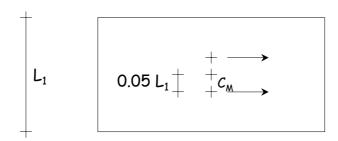
Nota: per il D.M. 16/1/96 spostamenti SLD = spostamenti SLU x 1.33 spostamento limite = 0.002 h

Modellazione della struttura

Il modello deve rappresentare in modo adeguato la distribuzione di massa e rigidezza effettiva considerando, laddove appropriato, il contributo degli elementi non strutturali

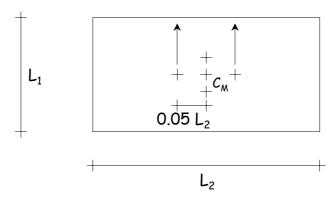
In generale il modello sarà costituito da elementi resistenti piani a telaio o a parete, connessi da diaframmi orizzontali

Ordinanza 3274, punto 4.4


Distribuzione effettiva delle masse

L'aliquota di carichi variabili presente in occasione del sisma potrebbe non essere uniformemente distribuita nell'edificio

$$\Psi_2 \, q_k$$
 q_k q_k q_k


Il centro di massa deve essere spostato di una quantità detta "eccentricità accidentale"

Eccentricità accidentale

Ordinanza 3274, punto 4.4

Eccentricità accidentale

Aumentano, di molto, le combinazioni di carico

Ordinanza 3274, punto 4.4

Considerazioni sull'eccentricità accidentale

L'eccentricità accidentale dovrebbe dipendere dal rapporto carichi variabili / carichi permanenti e quindi essere legata alla tipologia strutturale e alla destinazione d'uso

La norma fornisce una indicazione semplice per tener conto degli effetti dell'eccentricità accidentale:

In genere molto cautelativo Non corretto per edifici deformabili torsionalmente

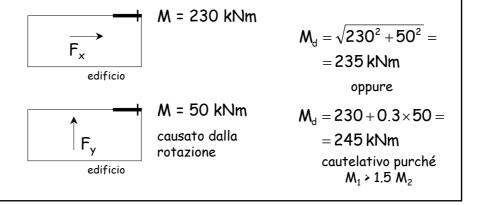
Modellazione delle azioni Combinazione delle componenti

Le componenti orizzontali e verticali del sisma agiscono simultaneamente

Esse sono però non sono correlate (i massimi si raggiungono in istanti diversi)

Come combinarle?

Componente verticale


Se ne tiene conto solo per:

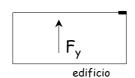
- Elementi con luce maggiore di 20 m
- Elementi principali precompressi
- Elementi a mensola
- Elementi spingenti
- Pilastri in falso
- Edifici con piani sospesi

Si noti che l'accelerazione spettrale dipende dal periodo e dalla zona sismica

Componenti orizzontali per le travi

Radice quadrata della somma dei quadrati, oppure azione in una direzione più 30% di azione nell'altra

Componenti orizzontali per i pilastri


Stesso criterio, ma è necessaria una interpretazione

 M_{\star} = 280 kNm $M_v = 45 \text{ kNm}$ caúsato dalla

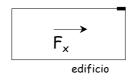
 $M_{d,x} = \sqrt{280^2 + 50^2} =$ rotazione $=284 \, kNm$

SRSS

 $M_{\star} = 50 \text{ kNm}$ causato dalla rotazione

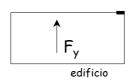
 $M_v = 105 \text{ kNm}$

 $M_{d,y} = \sqrt{45^2 + 105^2} =$ =114 kNm


Si potrebbe usare

Ma come verificare il pilastro?

Componenti orizzontali per i pilastri


Interpretazione

Sisma prevalente in direzione x

 M_{\times} = 280 kNm $M_y = 45 \text{ kNm}$ causato dalla rotazione

 $M_{d \times} = 280 + 0.3 \times 50 =$ $=295 \, kNm$

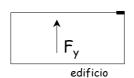
 $M_x = 50 \text{ kNm}$ causato dalla rotazione

 $M_{d,y} = 45 + 0.3 \! \times \! 105 =$ =77 kNm

 $M_y = 105 \text{ kNm}$

Verifica a pressoflessione deviata

Componenti orizzontali per i pilastri


Interpretazione

Sisma prevalente in direzione y

M_x = 280 kNm M_y = 45 kNm causato dalla rotazione

$$\begin{aligned} M_{d,x} &= 50 + 0.3 \times 280 = \\ &= 134 \; kNm \end{aligned}$$

 $M_x = 50 \text{ kNm}$ causato dalla rotazione $M_{d,y} = 105 + 0.3 \times 45 =$ = 119 kNm

 $M_y = 105 \text{ kNm}$

Verifica a pressoflessione deviata

Componenti orizzontali per i pilastri

Nota:

Allo SLU, la pressoflessione deviata è molto meno gravosa che alle TA

Se la struttura è ben dimensionata, cioè ha rotazioni non elevate, si può progettare a pressoflessione retta, separatamente per le due direzioni

La verifica a pressoflessione deviata sarà quasi sicuramente soddisfatta

Modellazione della struttura Una pignoleria che comporta rischi

Secondo l'Ordinanza:

"Nel caso di edifici con struttura in cemento armato la rigidezza degli elementi può essere valutata considerando gli effetti della fessurazione, considerando la rigidezza secante a snervamento.

In caso non siano effettuate analisi specifiche, la rigidezza flessionale e a taglio di elementi in cemento armato può essere assunta pari alla metà dei corrispondenti elementi non fessurati"

Ordinanza 3274, punto 4.4

Modellazione della struttura Una pignoleria che comporta rischi

Analisi (convenzionale) di strutture in cemento armato: si fa riferimento alla sezione geometrica

Più correttamente, si dovrebbe considerare la sezione reagente omogeneizzata

Differenza:

maggiore per le travi, sempre fessurate minore per i pilastri, in gran parte tutti compressi

Modellazione della struttura Una pignoleria che comporta rischi

È veramente importante tenerne conto?

È prudente seguire le indicazioni dell'Ordinanza (dimezzare le rigidezze di tutti gli elementi)?

Notare che se tutti gli elementi sono meno rigidi:

- a parità di forze, le sollecitazioni non cambiano
- la struttura è più deformabile, quindi con periodo più alto (e ordinata spettrale minore)

Come conseguenza:

- le sollecitazioni si riducono (costi minori per SLU)
- gli spostamenti aumentano (costi maggiori per SLD)

Duttilità locale - Considerazioni

Per strutture in cemento armato:

"Strutture aventi i telai resistenti all'azione sismica composti con travi a spessore, anche in una sola delle direzioni principali, devono essere progettate per la classe di duttilità B" [punto 5.3.2]

E se c'è solo un telaio con travi a spessore?

Riflessione: in un telaio con tante travi emergenti, si può ritenere che il telaio con travi a spessore sia "resistente all'azione sismica"?

Regolarità in altezza

I sistemi resistenti verticali si estendono per tutta l'altezza dell'edificio

Massa e rigidezza non variano bruscamente da un piano all'altro

Il rapporto tra resistenza effettiva e resistenza di calcolo non varia molto da un piano all'altro

Principi generali = prestazione richiesta

Regolarità in altezza

Andando dal basso verso l'alto:

- la massa rimane costante o si riduce al massimo del 20%
- la rigidezza rimane costante o si riduce al massimo del 20%
- il rapporto tra resistenza effettiva e resistenza di calcolo varia di \pm 15%

Regole applicative = prescrizioni (obbligatorie?)

Regolarità in altezza

Si noti inoltre che:

- il controllo delle masse può essere effettuato a priori, all'inizio del calcolo
- il controllo sulla rigidezza e sulla resistenza può essere effettuato solo a posteriori, dopo aver effettuato il calcolo e la disposizione delle armature

Regolarità in pianta

Configurazione in pianta compatta, approssimativamente simmetrica (per masse e rigidezze)

Rapporto tra i lati di un rettangolo in cui l'edificio è inscritto inferiore a 4

Rientri o sporgenze non superiori al 25% delle dimensioni dell'edificio

Solai infinitamente rigidi nel loro piano

Ma a cosa serve?

Sostanzialmente coincidente con la presentazione Azioni - 8

Per questa presentazione:

coordinamento A. Ghersi
realizzazione A. Ghersi
ultimo aggiornamento 8/03/2004