Edifici in muratura

Resistenza degli elementi di muratura

Catania, 20 aprile 2004 Bruno Calderoni

DAPS, Università di Napoli Federico II

Resistenza a compressione degli elementi (pietre naturali o mattoni artificiali)

INITIAL TESTS FOR BRICK/BLOCK

- A) FOR NATURAL STONE BLOCK:
 - THE STONE BLOCKS OF EACH QUARRY HAVE
 TO BE PERIODICALLY TESTED FOR ENSURING.
 THE MAINTENANCE OF THE RESISTANCE
 PROPERTIES.
 - EACH TIME 30 ENERGHENTS SHALL BE BROKEN IN COMPRESSION FOR EVALUATING THE CHARACTERISTIC COMPRESSIVE STRENGTH (fbx):

- · FOR TUFF BLOCK, IN PARTICULAR, IT NEEDS THAT

 fbm = 2.0 N/um²

 fbm > 1.5 11
- B) FOR ARTIFICIAL CLAY BRICK:

(WITH OR WITHOUT HOLLOWS)

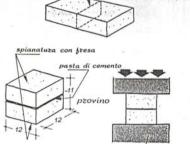
THE PRODUCTION HAS TO BE CERTIFIED

(AS WELL AS STEEL AND CEMENT) BY HEANS

OF OFFICIAL CONTROLS PERFORMED ONCE IN A YEAR.

COMPRESSIVE TESTS ARE CARRIED OUT BY

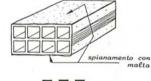
LOADING THE BRICK ALBRETWO DIFFERENT

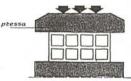

DIRECTION:

- ACTUAL WALL
- 6) THE DIRECTION ORTHOGONAL TO THE ONE OF LOADS IN THE WALL

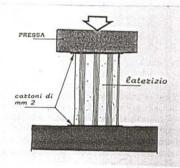
Prove di rottura a compressione su elementi artificiali (mattoni e blocchi)

BRICK COMPRESSIVE VEST


BRICKS W/O HOLES



TESTING PROCEDURE


HOLLOW BRICKS

pressa

TESTING ALONG THE ACTUAL LOAD DIRECTION

TESTING ALONG
THE DIRECTION
TO THE ACTUAL
LOAD

Prove di rottura a compressione su elementi artificiali (mattoni e blocchi)

EVALUATION OF CHARACTERISTIC VALUE (for)

. FOR COMPRESSION ALONG WALL LOADING DIRECTION:

FOR COMPRESSION ORTHOGONAL TO THE WALL LOADING DIRECTION :

where:

Resistenza a compressione delle rocce più comuni

	Carichi di ro	ttura su cubett	i in Kgcm ⁻²	
ROCCE	scadenti di scarto	normali	ottimi	medie generali
GRANITI	572-1000 non rari	1000-2000 comuni	2000-4144 frequenti	1635
SIENITI	879			1478
DIORITI	1300			1840
PORFIDI	620-1000 non rari	1000-2500 comuni	2500 frequenti	1909
TRACHITI	149-800	1000-1800	2251	1500 *
R.cce LEUCITICHE	1189-1500 più freq.	1500-2000 comuni	2000-2357 non rari	1748
BASALTI	835-2000 non rari	2000-4000 molto com.	4000-5071 piut. freq.	3241
TUFI VULCANICI **	3,30 freq.	30-70 molto comun.	70-187 rari	71
CALCARI (cal.dol.	45-500 rari	500-1500 comuniss.	1500-2200 non rari	845
DOLOMIE	390			1098
TUFI CALCAREI	7-56	9-455 i più comuni	38-455	86
TRAVERTINI	38			458
ALABASTRI	531		1200	680
QUARZITI	2580		· 3200	2862
Congl.(brecce bre	89-800 freq.	800-1500 comuni	1500 freq.	750
ARENARIE	70-400 non rari	400-1300 comuni	1300 non rari	790
MARMI	190-1000 rari	1000-1400 molto com.	1400 freq.	1113
CIPOLLINO	1150	1500	1500	1325
GNEISS	530	800-1900	1950	1104
ALTRI SCISTI	290		1500	700 ?
SERPENTINI	680		2654	1560

^(*) Non tenendo conto dei valori troppo bassi.

^(**) Per murature correnti si potrà considerare un carico di rottura medio di $40~{\rm Kgcm}^{-2}$, avendo accertato che la malta ha consistenza non inferiore al tufo e non esistono vuoti.

Resistenza a trazione delle rocce più comuni

ROCCE	SCADENTE E DI SCARTO	Carico di rot	tura a trazion	e in Kgcm ⁻²
-		NORMALE	OMITTO	MEDIA
GRANITI	6,4 - 20 non rari	20-60 molto com.	60-81 non rari	37
PORFIDI		51	70	60
TRACHITI		25	45	35
TUFI VULCANICI				7,7
CALCARI	9 - 30 non rari	30-70 molto com.	70-103 più freq.	50
DOLOMIE	10	28		21
ARENARIE	4,2-10 non rari	10-40 comuniss.	40-101 rari	19
MARMI	30		90	40
SERPENTINO	56	104		80
BASALTI				

Per le murature di tufo eseguite prima del 1950 con la tecnologia corrispondente all'impiego di pietre sbozzate, accertata una efficiente tessitura nell'ambito dei filoni, si può adottare una registenza ultima a trazione pari a 4 kgcm-2.

Resistenza delle malte

INITIAL TESTS FOR HORTAR

- WITH REFERENCE TO COMPOSITION, RESISTANCE PROPERTIES OF MORTAR HAVE TOBE OBTAINED BY TESTING:
 - · FLEXURAL TENSILE STRENGTH
 - · ULTIMATE COMPRESSIVE STRENGTH
- THE TESTING PROCEDURE ARE THE SAME

 USED FOR CEMENT : (D.M. 3/6/68)

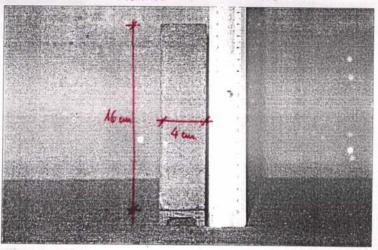
 AT LEAST 3 SPECIMENS (4 × 4 × 16 cm 51260)

 HAVE TO BE TESTED, FIRSTLY /N

 BENDING AND THEN IN COMPRESSION

 (ON THE OBTAINED 6 PARTS).
- ON THE COMPRESSIVE RESISTANCE:

CROUP	RESISTANCE (N/mm2)
мч	> 12
M 2	> 8
M 3	> 5
M 4	> 2.5


OR ACCORDING THEIR COMPOSITION (BY VOLUME)

			CEMENTO	AEREA	CALCE	SABBIA	POZZOCANA
M1	-	CEMENTIZIA	1		-	3	
H 2	-	AISITMAHAD	1	_	0.5	4	
M 3	-	BASTARDA	1		1	5	
N 4	-	BASTARBA	4	/	2	9	_
H4	-	POZZOLANICA	-	1	_		3
M4	-	IDRAULICA		-	1	3	-


Prove di resistenza sulle malte

CEMENT RESISTANCE TEST

SAMPLE FOR TESTING

OF SAMPLES

TENSILE RESISTANCE

THE TWO PARTS OBTAINED FROM BENDING TEST.

ARE USED FOR COMPRESSIVE RESISTANCE TEST.

Prove su malte e mattoni durante la costruzione

TESTS AND CHEKING DURING CONSTRUCTION

THE "DIRECTOR OF WORKS" HAS TO CHECK BEFORE AND DURING CONSTRUCTION THE RESISTANCE PROPERTIES OF:

- . HORTAR
- . BRICK
- · MASONRY

A) TESTS ON HORFAR

B) TESTS ON BRICK/BLOCK

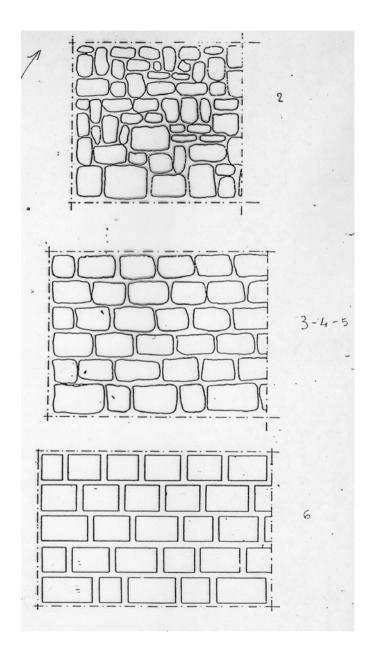
EACH SUPPLY OF BRICKS CAN BE CHECKED

BY COLLECTING AT LEAST THREE BLEHENTS

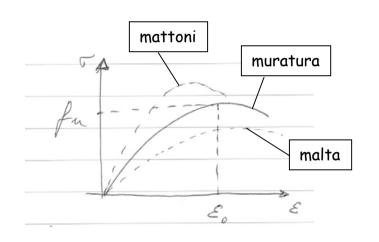
TO TEST IN COMPRESSION.

FOR ACCEPTING THE SUPPLY IT HUST BE HAPPEN:

where:


fbm = mean value of compressive resistance obtained by the 3 tests fbmin = minimum obtained value

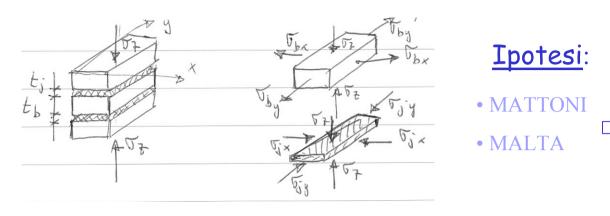
fbx = compressive characteristic resistance prescribed in design.


TIPI DI MURATURA

(Classificazione statica - CESUN 1983)

	TIPO DI MURATURA	σ _{AMM} [kg/cm²]
1	Muratura a secco (senza malta).	1
2	Muratura con pietre alla rinfusa poco lavorate.	2
3	Muratura a strati con pietre lavorate.	3
4	Muratura non regolare a strati o corsi.	4
5	Muratura regolare a strati (es. normale muratura di tufo).	5
6	Muratura a conci di pietra.	. 6
7	Muratura a conci di pietra con rinforzi in mattoni di laterizio nelle spalle dei vani, negli spigoli, o listata.	
8	Muratura in pietra da taglio, con blocchi squadrati con cura (quasi senza malta) ma con grappe metalliche.	1
9	Muratura in mattoni di laterizio pieni.	6-10

Resistenza a compressione della muratura (normale ai letti di malta)


Fattori influenzanti:

- •ELEMENTI (resistenza, geometria, deformabilità)
- •MALTA (resistenza, deformabilità, spessore giunti)
- •ACQUA (assorbimento mattoni, ritenzione malta)
- •GEOMETRIA (tessitura, sistema costruttivo)

Crisi per compressione:

- Sviluppo progressivo di fessure verticali negli elementi (per trazione ortogonale alla compressione)
- La trazione è dovuta alla coazione tra malta ed elementi a causa del diverso comportamento deformativo)
- La malta è confinata dagli elementi e quindi nasce uno stato di compressione triassale
- Per questo motivo la muratura (e quindi anche la malta) può resistere a sforzi di compressione maggiori della resistenza monoassiale della malta

Resistenza a compressione della muratura: modello teorico elastico (Haller, Francis, Tassios..)

Ipotesi:

Omogenei ed isotropi a comportamento elastico lineare

$$\frac{\mathcal{E}_{bx} = \frac{1}{E_{b}} \left[\overline{v}_{bx} + V_{b} (\overline{v}_{z} - \overline{v}_{by}) \right]}{E_{by} = \frac{1}{E_{b}} \left[\overline{v}_{by} + V_{b} (\overline{v}_{z} - \overline{v}_{bx}) \right]}$$

$$\frac{\mathcal{E}_{jx} = \frac{1}{E_{j}} \left[-\overline{v}_{jx} + V_{j} (\overline{v}_{z} + \overline{v}_{jx}) \right]}{E_{j}}$$

$$\frac{\mathcal{E}_{jx} = \frac{1}{E_{j}} \left[-\overline{v}_{jy} + V_{j} (\overline{v}_{z} + \overline{v}_{jx}) \right]}{E_{j}}$$

$$\frac{\mathcal{E}_{jy} = \frac{1}{E_{j}} \left[-\overline{v}_{jy} + V_{j} (\overline{v}_{z} + \overline{v}_{jx}) \right]}{E_{j}}$$

$$\frac{\mathcal{E}_{jy} = \frac{1}{E_{j}} \left[-\overline{v}_{jy} + V_{j} (\overline{v}_{z} + \overline{v}_{jx}) \right]}{E_{j}}$$

$$\mathcal{E}_{jx} = \frac{1}{E_{j}} \left[-\overline{v}_{jx} + V_{j} \left(\overline{v}_{z} + \overline{v}_{jy} \right) \right] \qquad \text{molto}$$

$$\mathcal{E}_{jy} = \frac{1}{E_{j}} \left[-\overline{v}_{jy} + V_{j} \left(\overline{v}_{z} + \overline{v}_{jx} \right) \right]$$

$$\nabla_{bx} \cdot t_b = \nabla_{jx} \cdot t_j \qquad \nabla_{bx} = \lambda \nabla_{jx}$$

$$\nabla_{by} \cdot t_b = \nabla_{jy} \cdot t_j \qquad \nabla_{by} = \lambda \nabla_{jy}$$

$$\Delta = \text{EQUILIBRID}$$

Resistenza a compressione della muratura: modello teorico elastico (Haller, Francis, Tassios...) (cont.)

<u>Ipotesi sulla rottura</u> <u>della muratura</u>

La crisi del mattone per trazione (σ_t) corrisponde alla rottura della muratura

Tensione di trazione nel mattone

Resistenza a compressione monoassiale del mattone

Phe

Resistenza a trazione monoassiale del mattone

Criterio di rottura del mattone (in condizioni triassiali)

Resistenza della muratura

Aspetti positivi:

- •La rottura a compressione deriva da coazioni fra i materiali
- •Corretta influenza dello spessore dei giunti

Aspetti negativi:

- •Necessaria conoscenza qualitativa delle costanti elastiche (v ed E)
- •Comportamento elastico lineare fino a rottura

Resistenza a compressione della muratura: modello teorico elastico (Hilsdorf)

Stesse ipotesi sul comportamento elastico dei materiali

Diversa ipotesi sulla rottura della muratura

La rottura della muratura si ha quando contemporaneamente si perviene alla crisi per comp.-trazione dei mattoni e per compressione triassiale della malta

Criterio di rottura del mattone (in condizioni triassiali)

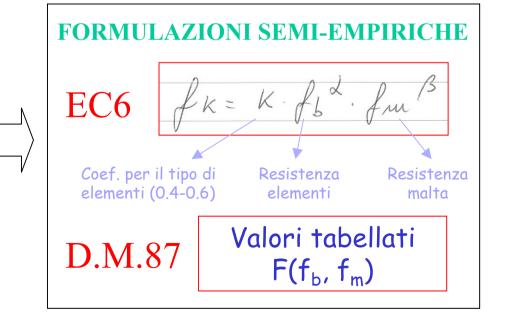
Criterio di rottura della malta (in condizioni triassiali)

Resistenza a compressione monoassiale della malta

Resistenza della muratura

dove:
$$2' = t_j' / (4, 1 \cdot t_b)$$

thu = 1,1 = 2,5 coeff. di non uniformità degli sforzi nel mattoni e nei giunti (diminuisce all'aumentare della resistenza della malta)


Resistenza a compressione della muratura: conclusioni sui modelli teorici

- La resistenza aumenta all'aumentare di quella dei componenti, ma in modo non proporzionale
- Se la malta è molto buona, l'aumento della resistenza degli elementi fa aumentare velocemente la resistenza della muratura (lentamente se la malta è scadente)
- La resistenza della muratura aumenta molto più lentamente all'aumentare della resistenza della malta
- La resistenza diminuisce all'aumentare dello spessore dei giunti (tanto più quanto più la malta è scadente)

Influenzano la resistenza anche:

- · i giunti verticali
- · la tessitura degli elementi
- · l'esecuzione della malta
- · la qualità dei giunti

(FATTORI EMPIRICI)

Resistenza della muratura secondo D.M. 20/11/87

Valori tabellari

- · LA RESISTENZA CARATTERISTICA A COMPRESSIONE

 (fk) SI PUD DETERMINARE ANCHE IN BASE ALLE

 CARATTERISTICHE DEI COMPONENTI (fbk-TIPO DI HALTA)

 SEMPRECHE':
 - I GIUNTI ORIZZONTALI E VERTICALI SIANO RIEMPITI

 COMPLETAMENTE DI MALTA CON SPESSORE

 5 mm < SP. < 15 mm.

TIPO	DI MALTA	114	. M3	M2	M1	
(N/mm2)	2.0 3.0 5.0 7.5 (0.0	1.0 1.2 2.0 3.0 3.5 4.1	1.0 1.2 2.2 3.3 4.1 4.7	1.0 1.2 2.2 3.4 4.5 5.3	1.0 1.2 2.2 3.5 5.0 6.2	(N/mm²)
	(N/mm/2)	3.0 5.0 7.5	1.5 1.0 2.0 1.2 3.0 2.0 5.0 3.0 7.5 3.5 10.0 4.1	1.5 1.0 1.0 2.0 1.2 1.2 3.0 2.0 2.2 3.0 3.0 3.3 7.5 3.5 4.1 10.0 4.1 4.7	1.5 1.0 1.0 1.0 2.0 1.2 1.2 1.2 3.0 2.0 2.2 2.2 3.0 3.0 3.3 3.4 7.5 3.5 4.1 4.5 10.0 4.1 4.7 5.3	1.5 1.0 1.0 1.0 1.0 1.0 2.0 1.2 1.2 1.2 1.2 3.0 2.0 2.2 2.2 2.2 2.2 2.2 2.2 3.5 3.5 4.1 4.5 5.0 10.0 4.1 4.7 5.3 6.2

· RESISTENZA CARATTERISTICA A TAGLIO

resisteura constt. a toplio tensione media a compressione in onema di conicli reticoli di compressione in di, orin.

SI DETERMINA SPERIMENTALMENTE O IN BASE ALLE CA KATTERISTICHE DEI COMPONENTI

> TIPO DI Fbk (N/mmi) frko (N/mm2) MALTA MURATURE 0.2 H1-H2-H3-H4 CON ELEMENT! ARTIFICIALI 0.3 M1-H2-H3-H4 IN LATERIZIO H1-H2-H3 0.1 MURATURE < 3 CON ELEMENT! 0.1 14 ARTIFICIALI CALCESTRUZZO H1-H2-H3 0.2 O CON ELENENT IN PIETRA 0.1 M4 NATURALE SOUA.

(roleper clementi

artificiali)

Resistenza della muratura secondo D.M. 20/11/87

Prove su muretti

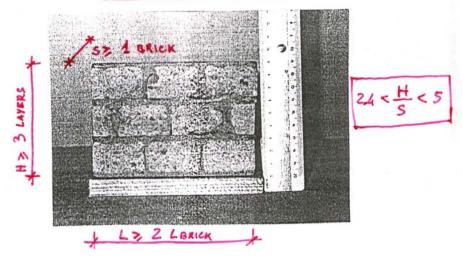
C) YEST FOR MASONRY

- · CHARACTERISTIC COMPRESSIVE STRENCTH (fx)
- · IT IS OBTAINED BY TESTING ENTIRE "LITTLE WALLS"

 CHARGE BUILT UP IN THE SAME WAY OF

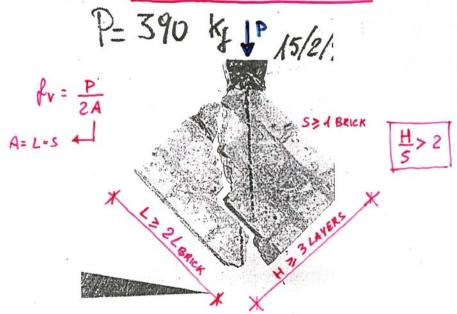
 THE ACTUAL WALL;
- · AT LEAST 6 WALLS ARE TO BE TESTED IN COMPRESSION
- . THE CHARACTERISTIC VALUE IS GIVEN BY :

- . CHARACTERISTIC SHEAR STRENGTH (fvk.)
 - . IT IS OBTAINED BY HEAR OF DIAGONAL COMPRESSIVE TESTS ON "LITTLE WALLS"
 - · AT LEAST 6 WALLS ARE TO BE TESTED
 - . THE CHARACTERISTIC VALUE IS GIVEN BY:


THE CHARACTERISTIC OBTAINED VALUES
HAVE TO COMPLY WITH THE ONES
PRESCRIBED BY DESIGNER

Resistenza della muratura secondo D.M. 20/11/87

Prove su muretti


COMPRESSIVE TEST ON WALL

SAMPLE DIMENSION

DIAGONAL COMPRESSIVE TEST ON WALL

SAMPLE AFTER FAILURE

RESISTENZA DELLA MURATURA

CIRCOLARE MIN. LL.PP. 30/7/4981:

"I STRUZIONI RELATIVE ALLA NORMATIVA TECNICA

PER LA RIPARAZIONE.... BEGLI EDIFICI IN MURATORA

DANNE GGIATI BAL SISMA "

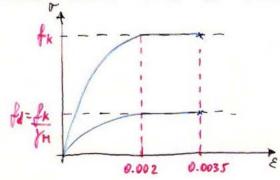
Tabella 1

	TIPO DI MURATURA	(t/m^2)	$\binom{\sigma_k}{(t/m^2)}$
ш	Mattoni pieni Malta bastarda	12	300
MURATURE NON CONSOLIDATE NON LESIONATE	Blocco modulare (con caratteristiche rispondenti alle prescrizioni DM 3-3-1975) (29 x 19 x 19 cm) Malta bastarda	8	250
SION	Blocco in argilla espansa o calcestruzzo Malta bastarda	18	300
URE NON CONSO	Murature in pietra (in presenza di ricorsi di mattoni estesi a tutto lo spessore del muro, il valore rappresentativo di τ_k può essere incrementato del 30%)		
RAT	a) pietrame in cattive condizioni b) pietrame grossolanamente squadrato e ben	2	50
MU	organizzato c) a sacco in buone condizioni	7 4	200 150
	Blocchi di tufo di buona qualità	10	250
MURATURE NUOVE	Mattoni «pieni» con fori circolari Malta cementizia $R_m \ge 1450 \ t/m^2$	20	500
MURA	Forati doppio UNI rapp. vuoto/pieno = 40% Malta cementizia $R_m \ge 1450 \ t/m^2$	24	500
MURATURE	Mattoni pieni, pietrame squadrato, consolidate con 2 lastre in calcestruzzo armato da cm 3 (minimo)	18	500
URA	Pietrame iniettato	11	300
ΣÕ	Murature in pietra a sacco consolidate con due lastree in cls armato da cm 3 (minimo)	11	300

Diagramma σ-ε secondo EC6

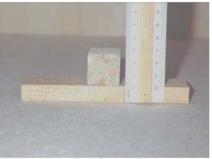
CARATTERISTICHE DI DEFORMAZIONE

· DIAGRAHMA U- & SPERIMENTALE


- MODULO DI ELASTICITÀ E (a breve termine)

BALLE PROVE SPERIHENTALL :

E - HODULO SECAME AD UN TERZO DI fr


. DA VALUFAZIONI EMPIRICHE :

· DIAGRAMMA F-E DI PROGETTO

Mattoncini di tufo giallo napoletano scala 1/10

$$f_{bm}^{1} = 31.4 \text{ kg/cm}^2$$

 $f_{bm}^2 = 40.2 \text{ kg/cm}^2$

$$f_{bk} = 0.75 \text{ x } 40.2 = 30.0 \text{ kg/cm}^2$$

Malte

- A) cementizia (M1)
- B) pozzolanica di calce (<M4)
- C) premiscelata ad alta resistenza (>M1)

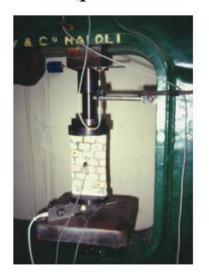
Resistenza a compressione delle malte

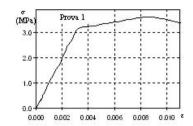
Malta	A	В	C
f (MPa)	12.5	1.56	42.5

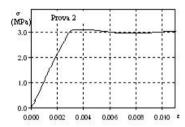
Resistenza a compressione della muratura

Risultati delle prove di schiacciamento su murettti a filari orizzontali

Malta	Valori di f _r ottenuti nelle singole prove (MPa)								f _m (MPa)	f _k (MPa)
A	2.47	2.77	2.71	3.69	2.92	3.51	-	= (3.01	1.99
В	1.69	1.97	1.63	1.82	1.79	2.21	-	-	1.85	1.36
C	2.34	2.25	2.52	2.28	2.49	2.86	3.17	3.02	2.62	1.85


Muratura con filari inclinati



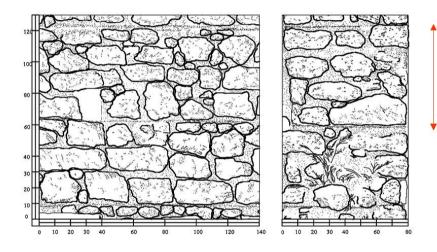

Risultati delle prove di schiacciamento su muretti a filari inclinati

Malta	Inclinazione	Valori di 1	f, ottenuti nel	le singole pr	ove (MPa)	f _m (MPa)
Α	10°	3.84	2.92	2.61	-	3.12
A	20°	3.14	2.34	2.80	<u> </u>	2.76
A	30°	2.92	3.23	2.77	3.60	3.13
A	40°	4.09	2.92	2.89	2.92	3.21
В	10°	2.25	2.15	-	-	2.20
В	20°	2.28	2.55	1.75	2	2.19
В	30°	2.62	2.00	2.03	2.09	2.18

Modulo elastico (prova a deformazione controllata)

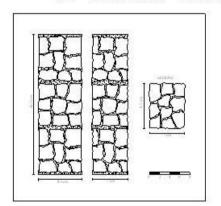
 $E_m \approx 10000 \text{ kg/cm}^2$

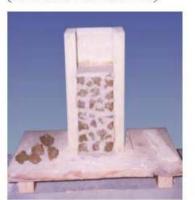
Resistenza a trazione della muratura



 $f_{tm} \approx 3.0 \text{ kg/cm}^2$

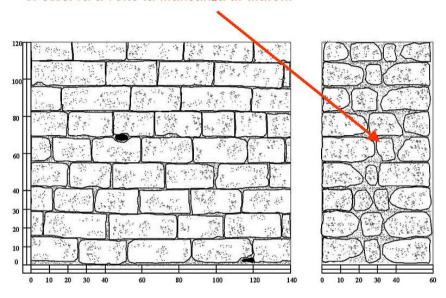
solidità: $\rho = f_{\rm tm}/f_{\rm cm} \approx 0.10$

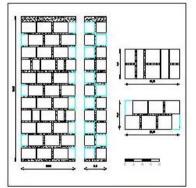

Le murature storiche napoletane in tufo giallo


Le murature a "cantieri": XVI – XVII secolo

il "cantiere"

A – Muratura "a cantieri" (secoli XVI e XVII)

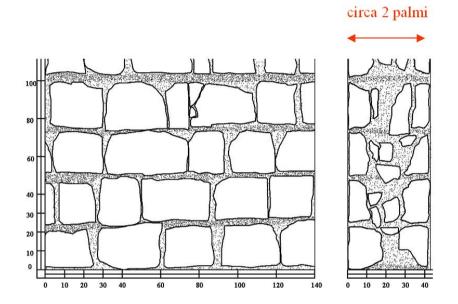


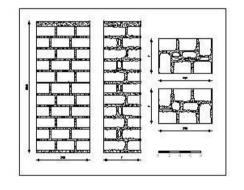


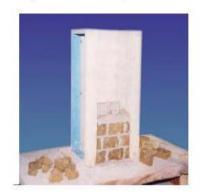
Murature a filari di "bozzette"; XVIII secolo

si osserva a volte la mancanza di diatoni

B – Muratura "a bozzette" (secolo XVIII)

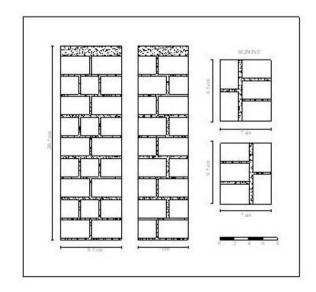




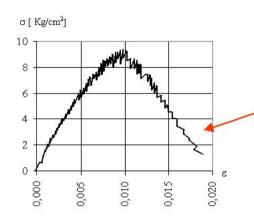


Murature a "blocchetti con masso a sacco"; XIX-XX secolo

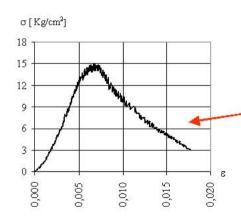
C – Muratura "a sacco" (secolo XIX)



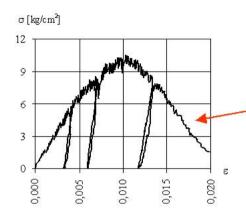
Le murature contemporanee in tufo giallo. (murature ordinarie)


La tradizionale escavazione a mano del tufo giallo ebbe termine in Campania a metà del XX secolo, con l'introduzione delle macchine segatrici a disco (1957). Da allora le murature partenopee furono allestite con conci prismatici di 12x25x40 cm, con tessiture compatte e con l'utilizzo anche di malta cementizia

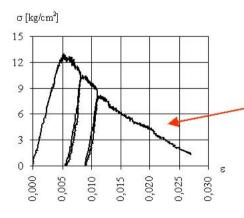
D – Muratura ordinaria (secolo XX)



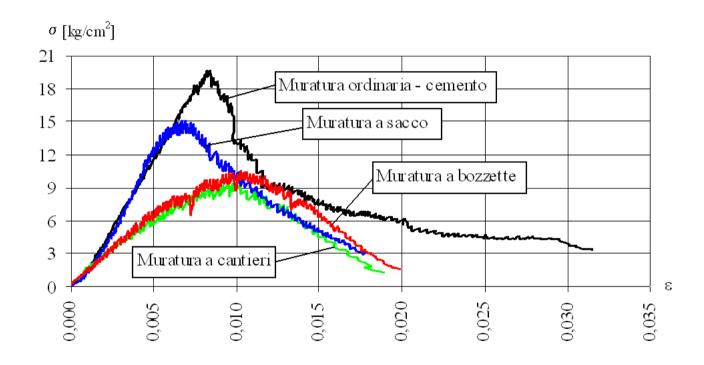
Prove di compressione monoassiali a deformazione guidata



a "cantieri"

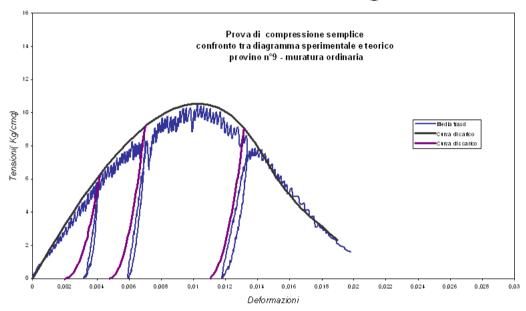


a "sacco"


a "bozzette"

"ordinaria"

Confronto tra le diverse tipologie storiche

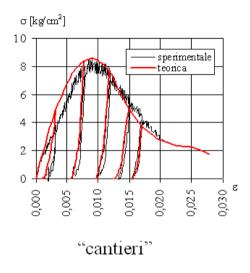


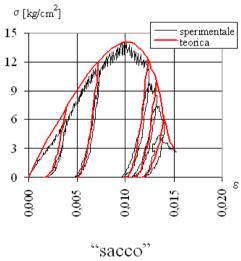
I risultati delle prove di compressione a deformazione guidata

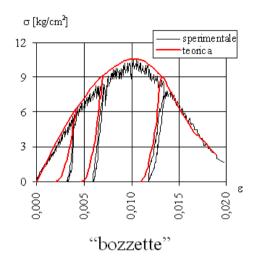
Tabella 3. Risultati delle prove di compressione monoassiale

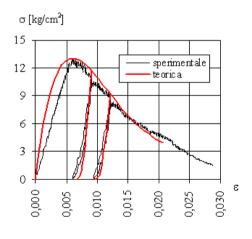
provino	tipologia di muratura	$rac{f_{co}}{[{ m kg/cm^2}]}$	$arepsilon_{co}$	\mathcal{E}_{mu}
1	a cantieri	9.45	0.0098	0.0189
2	a cantieri	5.83	0.0083	0.0183
3	a cantieri	8.57	0.0090	0.0204
4	a sacco	15.01	0.0067	0.0178
5	a sacco	14.89	0.0100	0.0205
6	a sacco	13.97	0.0102	0.0153
7	a bozzette	11.03	0.0062	
8	a bozzette	15.51	0.0081	0.0143
9	a bozzette	10.90	0.0104	0.0198
10	a bozzette con diatoni	13.38	0.0131	0.0206
11	a sacco	9.61	0.0077	0.0169
12	a cantieri	7.05	0.0045	0.0148
13	a cantieri	8.04	0.0074	0.0181
16	a sacco	6.85	0.0090	
21	ordinaria	12.97	0.0061	0.0288
22	ordinaria	19.70	0.0084	0.0314
23	ordinaria	13.32	0.0061	0.0225
24	ordinaria	17.22	0.0067	

Formulazione analitica del legame costitutivo


$$\sigma = \left[\left(k \eta \text{-} \eta^2 \right) / \left(1 \text{+} (k \text{-} 2) \eta \right) \right] F_c \qquad \qquad \text{per } \eta \leq 1.4$$


$$\sigma = [(k\eta - \eta^2) / (1 + (k-2)\eta) + (\eta - 1.4)^{(2.1)} / a] F_c \qquad per \ \eta \ge 1.4$$


$$con: \qquad \eta = \epsilon/\epsilon_c \qquad k = 0.533 \; \eta_u + 0.6381 \qquad \quad a = \left[(\eta - 1.4)^{(2.1)} \right] x \; \left[F_c \; / \left(\; \left| \; F_{cu} \; \right| + \; \left| \; F_{cs} \; \right| \; \right) \right]$$


essendo:
$$\eta_u = \epsilon_u/\epsilon_c$$
 $F_{cu} = 0.2 F_c$ $F_{cs} = \sigma_{per} \eta = \eta_{u \text{ valutata con la 1° espressione}}$

Confronto teorico - sperimentale

"ordinaria" con malta di calce