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ABSTRACT :

In the last decades a great effort has been made to obtain accurate evaluation of the resistance of reinforced
concrete elements subjected to pure shear or combined internal forces including shear. In regard to this latter
subject, continuum models characterized by simplified stress fields have recently been applied by some of the
Authors for the evaluation of the ultimate capacity interaction diagram of rectangular reinforced concrete
cross-sections undergoing combined axial force, bending moment and shear force.

The present paper constitutes the natural progress of these studies and describes an analytical tool for the
calculation of the ultimate capacity interaction diagram of reinforced concrete columns with circular
cross-section. The proposed method is based on the application of the static theorem of limit analysis and
requires the definition of equilibrium equations and boundary conditions for geometrical and mechanical
parameters. In order to validate the method, the relations developed are applied with reference to many
laboratory models tested in the past and the theoretical results are compared to the experimental ones.
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1. INTRODUCTION

In the attempt to provide accurate evaluation of the resistance of reinforced concrete members subjected to shear
forces, researchers have often ditched the discretized models of the structural behavior which have originated
from the studies of Mdrsch and adopted more comprehensive continuum models. These latter models use the
plastic approach and simplified stress fields to simulate the response of the materials, steel and concrete, which
constitute reinforced concrete. From the first studies on this topic now (e.g. Nielsen et al., 1978) the described
approach has gradually perfected and allowed the achievement of important results with moderately onerous
computational tools. In particular, this method has often been used to compensate for the lack of valid code
provisions relative to the assessment of the resistance of concrete members subjected to the combined action of
forces including shear. In this very context, the approach has been adopted by some of the Authors to define the
ultimate capacity interaction diagrams of rectangular, T and I shaped cross-sections subjected to axial force,
shear force and bending moment (Recupero et al., 2003). With good accuracy in the description of the material
behavior and resisting mechanisms, the study has highlighted the mutual influence of the internal forces and, in
particular, explained the level of importance of the shear force for the resistance of reinforced concrete members.
Furthermore, the comparison between theoretical and experimental results present in the literature proved the
substantial accuracy of the method.

The present paper constitutes the natural progress of these studies and allows the definition of the ultimate
capacity interaction diagram of reinforced concrete columns with circular cross-section. Under the same
hypotheses as the previous studies, the Authors derive the equilibrium and boundary conditions which define
the non-linear mathematical problem required for the evaluation of the interaction diagram. Then, the method is
applied with reference to many laboratory models experimented in the past and their resistance is evaluated in
order to assess the accuracy and reliability of the proposed procedure.
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2. METHODOLOGY AND MATHEMATICAL MODEL

The proposed method allows the evaluation of the ultimate capacity of reinforced concrete columns with
circular cross-section subjected to composed axial force, bending moment and shear force. The resistance of the
column is evaluated through application of the static theorem of limit analysis. To this end, the behavior of
concrete and steel as well is supposed to be rigid-perfectly plastic. In addition, for the sake of simplicity, the
cross-section is divided into three zones (Fig. 1) in which the response of concrete and steel is described by
simplified stress fields. This modeling has already been suggested by many other researchers (e.g. Nielsen et al.,
1978; Hsu, 1993) and finds particular justification in well designed reinforced concrete members in which steel
bars are closely spaced. Regarding the stress state of the single parts (concrete and steel bars) which constitute
the reinforced concrete element, the Authors hypothesize that in the outermost zones of the cross-section (called
F, and F,) the longitudinal reinforcement and the concrete experience only normal stresses parallel to the
longitudinal member axis and that these stresses are constant within the single zone. Instead, in the central zone
(called F5) the longitudinal and transverse reinforcements are assumed to experience stresses parallel to the axis
of the steel bars. In particular, in this paper the stress field referred to the transverse reinforcement is considered
inclined of an angle equal to 90° to the longitudinal member axis because the transverse reinforcement of the
columns examined is always constituted by circular hoops. Finally, still in the central zone, concrete is assumed
to experience principal compressive stresses which are inclined of an unknown angle 0 to the longitudinal
member axis.

3. ANALYTICAL FORMULATION OF THE PROBLEM

3.1 Preliminary Definitions

The dimension of the above-mentioned cross-section zones is completely defined by the angles a; and o, (Fig.1)
which identify the upper and lower limits of the central zone F; of the cross-section. Furthermore, the position
of the longitudinal and transverse reinforcements on the zone separation lines is established by the angles 3 and
v, which are linked to the angles o by means of the following relations:

Y, = arcsin(r, sin ocl) ;o Y, = arcsin(r, sin az) (1)
B, =arcsin (1; sin al) ; B, =arcsin (rs sin az) 2)

where
n=RI(R-c); r,=R/(R~c,) 3)

and ¢, is the cover to the circular hoops.

To obtain the stress field relative to the longitudinal reinforcement, the area Ay of the longitudinal steel bars is
distributed over the circumference passing through the centroids of the longitudinal steel bars. The longitudinal
reinforcement A per unit of length of this circumference is evaluated through the following relation:

— Asl — Asl
2n(R-c) 2mR,

where R is the radius of the cross-section, R,the radius of the circle passing through the centroids of the
longitudinal steel bars and ¢ the cover to the longitudinal reinforcement.
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Figure 1. Definition of the zones F;, F, and F; of the cross-section
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Figure 2. Identification of the elements E; E,, E;and E4

3.2 Equilibrium Conditions: Zones F, and F,

To define the equilibrium conditions relative to the cross-section zones named F; and F,, consider the elements
E, and E, (Fig. 2) obtained by cutting the reinforced concrete member by means of two couples of planes which
are spaced out to an infinitesimal quantity apart and are parallel or orthogonal to the longitudinal member axis.
Owing to this, the elements E; and E, have size equal to dy and dz along the y and z-axes and depth equal to
2Rcosa along the x-axis. Furthermore, they are subjected to the stresses o, and o, due to longitudinal
reinforcement and concrete and to the stress oy, due to the combined action of steel and concrete (Fig. 3).

The equilibrium equation of the element E; along the z-axis may be written as (d/ = dy/cosy)

o, h/cosy —o, Rcosa —o,Recosa =0 (5)
Starting from this equation, the normal stress o, may be defined as
A
Oy = Gyt — O (6)

Rcos (x\/l —r?sin’a

As is evident from this equation, the stress Gy, is constant within the zone F; because the stresses oy, and o, are
assumed constant in the same zone. Furthermore, this relation simplifies when referring to elements which are
within the cover to the hoops and assumes the following form

0,2Rcosa dy+oc,2Rcosa dy =0 (e. o,=-0.,) (1)

Similar mathematical expressions may be obtained with reference to the element E, in the zone F,. Specifically,
the equilibrium along the z-axis may be expressed by the relation

G,n\/cosy —o, ,Rcosa —c, ,Rcoso =0 (3)

and thus the stress o, as

A
Cu2 = 5 . 2 Gwi2 =02 (9)
Rcosoc\/l — 77 sin” o
Equation (8) simplifies when referring to elements within the cover to the circular hoops

G,,2Rcosa dy+G,,2Rcosa dy=0 (ie. 0,,=-0.,) (10)

Cwl Gwil  Ocl Owi Gwi1 Ol
<« «— = - - -«
<~ <~ = -~ - -
<~ «— - < - <«
<~ <~ = < —_ &
<~ <~ - <« - <«
<~ «~ —> < — <«
<~ <« - < - <«
dz dz

Figure 3. Stress fields in the elements E; and E,
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3.2 Equilibrium Conditions: Zone F;

Consider two elements (E; and E,4) in the central zone (F;) of the cross-section, as illustrated in Figure 4, and
first focus the attention on the element E;. This element is subjected to the stress oy3 due to the longitudinal
reinforcement, to the stress oy, due to the circular hoops, to the tangential stress t and to the combined normal
stress G5 due to concrete and steel bars. Regarding the stress state in the entire zone F3, the reinforcement stress
is assumed to be constant; furthermore, the stress due to the circular hoops is oriented along the tangent to the
hoops and thus inclined to the vertical axis of an angle [ which depends on the position of the element. The
angle f may be easily expressed as a function of the angle a by means of the relations

R sina=R, simf} = siny=rsinf = cosBz./l—rfsinza (11)

The equilibrium equations along the y and z-axis and the rotational equilibrium about the point O are

. A, .
(transl. along the y-axis) 2—* o, cosP cos3—2Rt cosa sind =0 (12)
S
. 2\ . .
(transl. along the z-axis) ——0,38iIn8—1cosY2Rcosa— o, ;sinI2Rcosa =0 (13)
cosYy
: . 2% in’ 4 ? in’
(rotational equil.) G, sin_ 9 _ 2—*c , cosfP cos” 9 +0,; sin”_ 9 2Rcoso=0 (14)
cosy 2 s 2 2

being 4, the double of the cross-sectional area of the single hoop and s the spacing of hoops.
Substituting Equation (11) into Equation (12) gives the tangential stresses

A o 2 .2
T=—""_cotI/1-7sin” a 15
R scosa * (15)
Hence, the normal c,; may be defined by substituting Equation (15) into Equation (13)

A )
o, = » G, Mcot2 94/1- rf sin’ o (16)

Rcosoc\/l—rl2 sin” o Rs cosa

As is evident in Equations (15-16), the normal stress ;3 and the tangential stress T cannot be constant in F3 but
are variable as a function of the angle a.

In order to evaluate the stress o3 in concrete, let us consider the element E4. This element experiences the
compressive stress G of concrete and the vertical component G, cosp of the stress of the circular hoops (Fig. 4).
The boundary condition Yo, = 0 relative to the element under examination states that:

A .
2.5 cosp—o,,sin’ 9 2Rcoso =0 (17
s

A ;
G, sn T J1-7sin’ a (18)

" Rs sin®9 cosa
This relation demonstrates the non-uniformity of the stress 6.;. Even if not shown in figure, the non-linearity is
concentrated in the parts of the zone F; which are far from the geometrical centre.

and thus

Owi3

LEbiliiliyd

Q
g
rererrrrrnt

NN NN N N N N NN

| GswCOSf

Figure 4. Stress fields in the elements E; and E4
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3.3. Global Equilibrium

The translational equilibrium along the longitudinal axis states that

N= jcds jo d5+jc d5+jcw3ds
ﬁ_7€__J ﬁ_j%;_, fl_ﬁ:_d

being N;, N, and Nj; the axial forces present in the zones Fy, F, and F;.

(19)

The first contribution N; to the global axial force may be calculated by means of the following equation

T,
Gy Gy %

N, = j o, (a)2R? cos’ ada =0, 2R\ j % jo-o, 2szcoszada

wl Wi \/7 cl
Qing Qinf 1—7‘1 S a %

and the other two contributions N, and N; by the relations

N,=06,,,2RA I &da G,,2R? I cos” ada

o V1= —rsin” o A
v 2RA £ 9 :
N;=2Rc, 5h J. 8 om0 O _[cos on/1-r?sin’ a dao

2 2.2
;\/I—r, sin” o S :
2

Qinf

The rotational equilibrium of the cross-section leads to the following equation
M= .[Gwlde+ jcwzde+ch3de

N N S5

M, M, M,
The contributes M;, M, and M; to the global bending moment may be written as
%

M, = 2R2cswllkj cosasina ~2R’c, Icos asina do

J1-r’sina
Olinf
o

M, = ZGW,ZRZKI cosasina a—-2R’c, j cos” asina do

J1-7sin’ o
Olinf 2
" cosasina R*4A, 6 “
M, =2R%c, ;)\ J. —— da -2 cot? SJ. sinocos a1 — 77 sin® o dat
s
Olinf

1-7sin’ a o
Finally, the shear force may be computed by means of the following equation

R A
y = ZslnOs cot [P, +sinp, cosP, —B, —sinp, cosp, |
s

3.4 Mechanical and Geometrical limits

The zone separation lines must intersect the circular hoops, i.e.
“Oljim1 < 04 S Oy 5 =Olyigy < Oy < Qi
being oy, =arcsin(1/r;).
Furthermore, the zones F; and F, must not overlap and thus the following inequality must hold
o, =0,
The mechanical parameters must satisfy the following relations
0<0,<fu; 0<0,<fau; 026;m< S

SR SJ[yd ; Sz < fyd H Owis < fyd > O < fyd

(20)

21

(22)

(23)

24)

(25)

(26)

27

(28)

(29)

(30)
€2))
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where f; is the characteristic value of the compressive strength of concrete, f the characteristic value of the
yield strength of steel and

forr =0.85 Ja 5 fosn =0.6 (1 —Ajﬁ (y~1.6) (32)
Y 250 ) v,
Finally, in accordance with the Italian application document to Eurocode 2, the angle of the compressive stress
on the concrete of the central zone F; is assumed as variable between the following limits:
I<cot3<2 (33)

c

4 INTERACTION DOMAINS

The resistance of reinforced concrete elements is evaluated by means of ultimate capacity interaction diagrams.
The coordinates of the generic point of this diagram are calculated by mathematical non-linear programming
problems which include the aforementioned equilibrium and boundary equations. With the aim of obtaining the
interaction diagram, the maximum values of two of the internal actions under examination (e.g. axial force and
bending moment) are first separately calculated. Hence, the range of values of these two variables is discretized
and the maximum and minimum possible values of the shear force are calculated for each couple of the
variables selected. The mathematical problem is non linear and, therefore, the solution of the problem depends
on the starting values of all the parameters of the problem. In order to find a safe value of the shear resistance,
the mathematical problem is solved with reference to many starting values of the parameters and the lowest
value of the shear force is assumed as the shear capacity of the member.

4.1. Example

The proposed method is first applied to a circular reinforced concrete column characterized by R= 30 cm,
A,=30.54 cm” (12 bars with diameter equal to 18 mm), ¢=5 cm, 4,,=0.50 cm® (hoops with diameter equal to 8
mm) and s=10 cm. In addition, the compressive strength of the concrete is characterized by f.,; =11.02 MPa and
the yield strength of the longitudinal and transverse reinforcements by f,=374 MPa.

The ultimate capacity interaction diagram of the cross-section is reported in Figure 5 with reference to an axial
force of 700 kN. To define synthetically the ultimate capacity interaction between bending moment and shear
force, the domain is divided into four zones which are labeled with numbers from 1 to 4. The segments which
separate the zones identify points of the interaction diagram which are characterized by reductions of the
ultimate bending moment equal to 25%, 50% and 75%. With reference to the points A and B of Figure 5, Figure
6 shows the stress state of concrete and steel bars and the dimensions of the zones F; to F; of the cross-section.
To highlight the influence of the longitudinal reinforcement on the resistance of the cross-section, the interaction
diagram is reported in Figure 7 with reference to reinforcement ratios equal to 0.20, 0.30 and 0.40 cm*m. The
influence of the transverse reinforcement is also apparent in Figure 7 where the interaction diagrams are plotted
for hoop spacing equal to 5 and 10 cm. Even if not shown in the figure, the dimension of the domain reduces for
very high values of the axial force.

V(KN)
A B
300 Q===
1 / 2 /
/ V4 3 el
200 A A
Iy 4
100 A
/l;;i’//"“ \C
0 o
0 100 200 300 M (kNm)

Figure 5. Evaluation of the control parameter as a function of the aspect ratio L/D
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Figure 6. Stress relative to points A and B of the interaction diagram

5. COMPARISON WITH LABORATORY TESTS

The results of many laboratory tests have been compared here with those of the proposed analytical method. The
laboratory tests refer to different amounts of longitudinal and transverse reinforcements and are described in
detail in Ghee et al. (1989), Ascheim and Moehle (1992), Priestley and Benzoni (1996), Calderone et al. (2000), Chai
et al. (1991), Berry et al. (2004), Kowalsky et al,. (1999), Kunnath et al. (1997), Lim and McLean (1991), Lehman
and Moehle (1998), Priestley et al. (1994a), Priestley et al. (1994b) and Wong et al. (1993). The cross-section
geometrical properties and the mechanical characteristics of concrete and steel considered in the application of
the proposed method are deduced from these papers.

A dedicated index has been defined for comparison of theoretical and experimental results. Specifically, on the
M-V interaction diagram relative to the axial force of the experimental test the Authors have marked the point
corresponding to the maximum experimental values of bending moment and shear force (M., Vexp). Hence, a
segment has been drawn from the origin of the coordinate system to the point marked. Owing to the static
determinacy of the scheme, the points of these segments represent the internal actions experienced by the
column during the test. The intersection of this segment with the M-V diagram defines the couple of internal
actions corresponding to the prediction of the ultimate capacity of the member. If O indicates the origin of the
coordinate system, P, the point of coordinates (M, Vexp) and P, the point of coordinates (Mcac, Veac) the
parameter adopted for comparison is

5= % (34)
2

The values assumed by this parameter are reported in Figure 8. In the same figure the values are differentiated
depending on the zone of the domain in which the points of coordinates (M, V) fall.

With few exceptions the analysis highlights a good accord between theoretical and experimental results. This is
evident in Figure 8 where the parameter is plotted as a function of the aspect ratio L/D, i.e. of the ratio of the
shear span to the column diameter. The accord is obviously less accurate in elements with low aspect ratio.
However, it should be noted that in these cases the prediction is always on the safe side. This is not surprising
because the resisting mechanism of these latter models is chiefly characterized by direct travel of the force to the
support, i.e. by arch action, while that simulated by the proposed model refers to the so called beam action.

Vi) , V(kN) ,
s=10 cm s=5cm
600 600 |
A=0.4 cm¥cm

400 400

| 2=0.4 cm*cm \ \
200 < 200

2=0.2 cmz/cm>\ \ 2=0.2 cm*cm /\ \ \
0 ! 0 ;
0 200 400 600 M (kNm) 0 200 400 600 M (kNm)

Figure 7. M-V domains for different longitudinal and transverse ratios (N=700 kN)
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Figure 8. Evaluation of the control parameter as a function of the aspect ratio L/D

CONCLUSIONS

The paper proposes a mathematical model for the evaluation of the resistance of columns with circular cross-section
subjected to combined axial force, shear force and bending moment. The model is based on the plastic approach and
on the schematization of the resisting mechanisms by means of stress fields. In order to evaluate the reliability of the
method the resistance of many columns tested in the last decades has been predicted by the theoretical approach. The
comparison highlights that the theoretical model generally provides good estimates of the experimental results as long
as the arch effect does not govern the structural behavior.

REFERENCES

Ascheim and Moehle 1992. Shear Strength and Deformability of RC Bridge Columns Subjected to Inelastic Cyclic
Displacement. Report n® UCB/EERC 92/04, Earth. Eng. Research Center, University of California at Berkeley, USA.

Berry, M., Parrish, M., Eberhard, M. 2004. PEER Structural Performance Database. Pacific Earth. Eng. Research Center.

Calderone, A.J., Lehman, D.E., Moehle, J.P. 2000. Behavior of Reinforced Concrete Bridge Columns Having Aspect Ratios
and Varying Lengths of Confinement. PEER Report 2000/08, pp. 136.

Chai, Y.H., Priestley, M.J.N., Seible, F. 1991. Seismic Retrofit of Circular Bridge Columns for Enhanced Flexural
Performance. ACI Structural Journal, vol. 88, n° 5, pp. 572-584

Ghee, A. B., Priestley, M.J.N., Paulay, T. 1989. Seismic shear strength of circular reinforced concrete columns. ACI
Structural Journal, vol. 86, pp. 45 — 59.

Priestley, M.J.N., Benzoni, G. 1996. Seismic Performance of Circular Columns with Low Longitudinal Reinforcement
Ratios. ACI Structural Journal, vol. 93, n® 4, pp. 474 — 485.

Hsu, T.T.C. 1993. Unified Theory of Reinforced Concrete. CRC

Kowalsky, M.J., Priestley, M.J.N., Seible, F.. 1999. Shear and Flexural Behavior of Lightweight Concrete Bridge Columns in
Seismic Regions. ACI Structural Journal, vol. 96, n° 1, pp. 136 — 148.

Kunnath S.K., El-Bahy, A., Taylor, A.W., Stone, W.C. 1997. Cumulative Seismic Damage of Reinforced Concrete Bridge
Piers. Technical Report NCEER-97-0006, National Center for Earthquake Research, pp.147.

Lehman, D.E., Moehle, J.P. 1998. Seismic Performance of Well-Confined Concrete Bridge Columns. Pacific Earthquake
Engineering Research Center, PEER Report 1998/01, pp. 205.

Lim, K.Y, McLean, D.I. 1991. Scale Model Studies of Moment-Reducing Hinge Details in Bridge Columns. ACI Structural
Journal, vol. 88, n° 4, pp. 465— 474.

Nielsen, M.P., Braestrup, M.W., Bach, F. 1978. Rational analysis of shear in reinforced concrete beams. IABSE Proceedings.

Priestley, M.J.N., Seible, F., Xiao, Y., Verma, R. 1994a. Steel jacket retrofitting of reinforced concrete bridge columns for
enhanced shear strength- Partl: Theoretical consideration and test design. ACI Structural Journal, vol. 91, pp. 394 —405.

Priestley, M.J.N., Seible, F., Xiao, Y., Verma, R. 1994b. Steel jacket retrofitting of reinforced concrete bridge columns for
enhanced shear strength- Part2: Test results and comparison with theory. ACI Structural Journal, vol. 91, pp. 537 — 550.

Recupero, A., D’Aveni, A., Ghersi, A. 2003. N-M-V Interaction Domains for Box I-shaped Reinforced Concrete Members,
ACIT Structural Journal, vol. 100, n° 1, pp. 113-119.

Recupero A., D’Aveni, A., Ghersi, A. 2005. N-M-V Interaction Domains for Prestressed Concrete Beams, Journal of
Structural Engineering, vol. 131, n® 9.

Wong, Y., Paulay, T., Priestley, M.J.N. 1993. Response of Circular Reinforced Concrete Columns to Multi-Directional
Seismic Attack. ACI Structural Journal, vol. 90, n° 2, pp. 180 — 191.



