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ABSTRACT : 

In the last decades a great effort has been made to obtain accurate evaluation of the resistance of reinforced 
concrete elements subjected to pure shear or combined internal forces including shear. In regard to this latter 
subject, continuum models characterized by simplified stress fields have recently been applied by some of the 
Authors for the evaluation of the ultimate capacity interaction diagram of rectangular reinforced concrete 
cross-sections undergoing combined axial force, bending moment and shear force.  
The present paper constitutes the natural progress of these studies and describes an analytical tool for the 
calculation of the ultimate capacity interaction diagram of reinforced concrete columns with circular 
cross-section. The proposed method is based on the application of the static theorem of limit analysis and
requires the definition of equilibrium equations and boundary conditions for geometrical and mechanical 
parameters. In order to validate the method, the relations developed are applied with reference to many
laboratory models tested in the past and the theoretical results are compared to the experimental ones. 
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1. INTRODUCTION  
 
In the attempt to provide accurate evaluation of the resistance of reinforced concrete members subjected to shear 
forces, researchers have often ditched the discretized models of the structural behavior which have originated 
from the studies of Mörsch and adopted more comprehensive continuum models. These latter models use the 
plastic approach and simplified stress fields to simulate the response of the materials, steel and concrete, which 
constitute reinforced concrete. From the first studies on this topic now (e.g. Nielsen et al., 1978) the described 
approach has gradually perfected and allowed the achievement of important results with moderately onerous 
computational tools. In particular, this method has often been used to compensate for the lack of valid code 
provisions relative to the assessment of the resistance of concrete members subjected to the combined action of 
forces including shear. In this very context, the approach has been adopted by some of the Authors to define the 
ultimate capacity interaction diagrams of rectangular, T and I shaped cross-sections subjected to axial force, 
shear force and bending moment (Recupero et al., 2003). With good accuracy in the description of the material 
behavior and resisting mechanisms, the study has highlighted the mutual influence of the internal forces and, in 
particular, explained the level of importance of the shear force for the resistance of reinforced concrete members. 
Furthermore, the comparison between theoretical and experimental results present in the literature proved the 
substantial accuracy of the method.  
The present paper constitutes the natural progress of these studies and allows the definition of the ultimate 
capacity interaction diagram of reinforced concrete columns with circular cross-section. Under the same 
hypotheses as the previous studies, the Authors derive the equilibrium and boundary conditions which define 
the non-linear mathematical problem required for the evaluation of the interaction diagram. Then, the method is 
applied with reference to many laboratory models experimented in the past and their resistance is evaluated in 
order to assess the accuracy and reliability of the proposed procedure. 
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2. METHODOLOGY AND MATHEMATICAL MODEL  
 
The proposed method allows the evaluation of the ultimate capacity of reinforced concrete columns with 
circular cross-section subjected to composed axial force, bending moment and shear force. The resistance of the 
column is evaluated through application of the static theorem of limit analysis. To this end, the behavior of 
concrete and steel as well is supposed to be rigid-perfectly plastic. In addition, for the sake of simplicity, the 
cross-section is divided into three zones (Fig. 1) in which the response of concrete and steel is described by 
simplified stress fields. This modeling has already been suggested by many other researchers (e.g. Nielsen et al., 
1978; Hsu, 1993) and finds particular justification in well designed reinforced concrete members in which steel 
bars are closely spaced. Regarding the stress state of the single parts (concrete and steel bars) which constitute 
the reinforced concrete element, the Authors hypothesize that in the outermost zones of the cross-section (called 
F1 and F2) the longitudinal reinforcement and the concrete experience only normal stresses parallel to the 
longitudinal member axis and that these stresses are constant within the single zone. Instead, in the central zone 
(called F3) the longitudinal and transverse reinforcements are assumed to experience stresses parallel to the axis 
of the steel bars. In particular, in this paper the stress field referred to the transverse reinforcement is considered 
inclined of an angle equal to 90° to the longitudinal member axis because the transverse reinforcement of the 
columns examined is always constituted by circular hoops. Finally, still in the central zone, concrete is assumed 
to experience principal compressive stresses which are inclined of an unknown angle θ to the longitudinal 
member axis.  
 
 
3. ANALYTICAL FORMULATION OF THE PROBLEM 
 
3.1 Preliminary Definitions 
The dimension of the above-mentioned cross-section zones is completely defined by the angles α1 and α2 (Fig.1) 
which identify the upper and lower limits of the central zone F3 of the cross-section. Furthermore, the position 
of the longitudinal and transverse reinforcements on the zone separation lines is established by the angles β and 
γ, which are linked to the angles α by means of the following relations: 
 ( )1 1arcsin sinlrγ = α ;  ( )2 2arcsin sinlrγ = α  (1) 

 ( )1 1arcsin sinsrβ = α ;  ( )2 2arcsin sinsrβ = α  (2) 
where 
 ( )lr R R c= − ; ( )s hr R R c= −  (3) 
and ch is the cover to the circular hoops.  
To obtain the stress field relative to the longitudinal reinforcement, the area Asl of the longitudinal steel bars is 
distributed over the circumference passing through the centroids of the longitudinal steel bars. The longitudinal 
reinforcement λ per unit of length of this circumference is evaluated through the following relation: 

 
( )2 2

sl sl

l

A A
R c R

λ = =
π − π

 (4) 

where R is the radius of the cross-section, Rl the radius of the circle passing through the centroids of the 
longitudinal steel bars and c the cover to the longitudinal reinforcement. 

α1 

α2 

F1 

F2 

F3 

 
Figure 1. Definition of the zones F1, F2 and F3 of the cross-section 
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3.2 Equilibrium Conditions: Zones F1 and F2  
 
To define the equilibrium conditions relative to the cross-section zones named F1 and F2, consider the elements 
E1 and E2 (Fig. 2) obtained by cutting the reinforced concrete member by means of two couples of planes which 
are spaced out to an infinitesimal quantity apart and are parallel or orthogonal to the longitudinal member axis. 
Owing to this, the elements E1 and E2 have size equal to dy and dz along the y and z-axes and depth equal to 
2Rcosα along the x-axis. Furthermore, they are subjected to the stresses σwl and σc due to longitudinal 
reinforcement and concrete and to the stress σw due to the combined action of steel and concrete (Fig. 3).  
The equilibrium equation of the element E1 along the z-axis may be written as ( cosdl dy γ= ) 
 1 1 1cos cos  cos  0wl w cR Rσ λ γ − σ α − σ α =  (5) 
Starting from this equation, the normal stress σw1 may be defined as 

 1 1 12 2cos 1 sin
w wl c

lR r

λ
σ = σ − σ

α − α
 (6) 

As is evident from this equation, the stress σw1 is constant within the zone F1 because the stresses σw and σc are 
assumed constant in the same zone. Furthermore, this relation simplifies when referring to elements which are 
within the cover to the hoops and assumes the following form 
 1 12 cos  2 cos  0w cR dy R dyσ α σ α+ =   (i.e. 1 1w cσ σ= − ) (7) 
Similar mathematical expressions may be obtained with reference to the element E2 in the zone F2. Specifically, 
the equilibrium along the z-axis may be expressed by the relation 
 2 2 2cos cos  cos  0wl w cR Rσ λ γ − σ α − σ α =  (8) 
and thus the stress σw2 as 

 2 2 22 2cos 1 sin
w wl c

lR r

λ
σ = σ − σ

α − α
 (9) 

Equation (8) simplifies when referring to elements within the cover to the circular hoops 
 2 22 cos  2 cos  0w cR dy R dyσ α + σ α =  (i.e. 2 2w cσ σ= − ) (10) 
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Figure 2. Identification of the elements E1, E2, E3 and E4 
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Figure 3. Stress fields in the elements E1 and E2 
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3.2 Equilibrium Conditions: Zone F3 
 
Consider two elements (E3 and E4) in the central zone (F3) of the cross-section, as illustrated in Figure 4, and 
first focus the attention on the element E3. This element is subjected to the stress σwl3 due to the longitudinal 
reinforcement, to the stress σsw due to the circular hoops, to the tangential stress τ and to the combined normal 
stress σw3 due to concrete and steel bars. Regarding the stress state in the entire zone F3, the reinforcement stress 
is assumed to be constant; furthermore, the stress due to the circular hoops is oriented along the tangent to the 
hoops and thus inclined to the vertical axis of an angle β which depends on the position of the element. The 
angle β may be easily expressed as a function of the angle α by means of the relations 

 2 2 sin  sin        sin sin        cos 1 sinl s sR R r rα = β ⇒ γ = β ⇒ β = − α  (11) 
The equilibrium equations along the y and z-axis and the rotational equilibrium about the point O are 

(transl. along the y-axis) 2 cos  cos 2  cos  sin 0sw
sw

A R
s

σ β ϑ − τ α ϑ =  (12) 

(transl. along the z-axis) 3 3
2 sin cos 2 cos sin 2 cos 0

cos wl wR Rλ
σ ϑ − τ ϑ α − σ ϑ α =

γ
 (13) 

(rotational equil.)  
2 2 2

3 3
2 sin cos sin2 cos 2 cos 0

cos 2 2 2
sw

wl sw w
A R
s

λ ϑ ϑ ϑ
σ − σ β + σ α =

γ
 (14) 

being Asw the double of the cross-sectional area of the single hoop and s the spacing of hoops. 
Substituting Equation (11) into Equation (12) gives the tangential stresses  

 2 2cot 1 sin
 cos
sw sw

s
A r

R s
σ

τ = ϑ − α
α

 (15) 

Hence, the normal σw3 may be defined by substituting Equation (15) into Equation (13) 

 2 2 2
3 32 2

cot 1 sin
  coscos 1 sin

sw sw
w wl s

l

A r
R sR r

σλ
σ = σ − ϑ − α

αα − α
 (16) 

As is evident in Equations (15-16), the normal stress σw3 and the tangential stress τ cannot be constant in F3 but 
are variable as a function of the angle α. 
In order to evaluate the stress σc3 in concrete, let us consider the element E4. This element experiences the 
compressive stress σc3 of concrete and the vertical component σsw cosβ of the stress of the circular hoops (Fig. 4). 
The boundary condition Σσy = 0 relative to the element under examination states that: 

 2
32 cos sin  2 cos 0sw

sw c
A R
s

σ β − σ ϑ α =  (17) 

and thus 

 2 2
3 2 1 sin

 sin  cos
sw sw

c s
A r

R s
σ

σ = − α
ϑ α

 (18) 

This relation demonstrates the non-uniformity of the stress σc3. Even if not shown in figure, the non-linearity is 
concentrated in the parts of the zone F3 which are far from the geometrical centre. 
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Figure 4. Stress fields in the elements E3 and E4
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3.3. Global Equilibrium 
 
The translational equilibrium along the longitudinal axis states that 

 
1 2 3

1 2 3

1 2 3w w w
S S S S

N N N

N dS dS dS dS= σ = σ + σ + σ∫ ∫ ∫ ∫
14243 14243 14243

 (19) 

being N1, N2 and N3 the axial forces present in the zones F1, F2 and F3.  
The first contribution N1 to the global axial force may be calculated by means of the following equation 

 ( )
sup sup

inf inf 1

2
2 2 2 2

1 1 1 12 2

cos2 cos 2 2 cos
1 sin

w wl c
l

N R d R d R d
r

πα α

α α α

α
= σ α α α = σ λ α − σ α α

− α∫ ∫ ∫  (20) 

and the other two contributions N2 and N3 by the relations  

 
sup 2

inf

2 2
2 2 22 2

2

cos2 2 cos
1 sin

wl c
l

N R d R d
r

α α

−πα

α
=σ λ α−σ α α

− α∫ ∫  (21) 

 
sup 1

inf 2

2
2 2

3 3 2 2

2 cotcos2 cos 1 sin  
1 sin

sw sw
wl s

l

RAN R d r d
sr

α α

α ε

σ ϑα
= σ λ α− α − α α

− α∫ ∫  (22) 

The rotational equilibrium of the cross-section leads to the following equation 
 

1 2 3

1 2 3

1 2 3w w w
S S S

M M M

M y dS y dS y dS= σ + σ + σ∫ ∫ ∫
14243 14243 14243

 (23) 

The contributes M1, M2 and M3 to the global bending moment may be written as 

 
sup

inf 1

2
2 3 2

1 1 12

cos sin2 2 cos sin  
1 sin

wl c
l

M R d R d
r

πα

α α

α α
= σ λ α − σ α α α

− α∫ ∫  (24) 

 
sup 2

inf

2 3 2
2 2 22 2

2

cos sin2 2 cos sin  
1 sin

wl c
l

M R d R d
r

α α

−πα

α α
= σ λ α − σ α α α

− α∫ ∫  (25) 

 
sup 1

inf 2

2
2 2 2 2

3 3 2 2

cos sin2 2 cot sin cos 1 sin
1 sin

sw sw
wl s

l

R AM R d r d
sr

α α

α α

σα α
= σ λ α − ϑ α α − α α

− α∫ ∫  (26) 

Finally, the shear force may be computed by means of the following equation 

 [ ]1 1 1 2 2 2cot sin cos sin coss sw swR AV
s

σ
= ϑ β + β β − β − β β  (27) 

 
3.4 Mechanical and Geometrical limits 
 
The zone separation lines must intersect the circular hoops, i.e.  
 lim1 1 lim1-α ≤ α ≤ α ;  lim1 2 lim1-α ≤ α ≤ α  (28) 
being ( )lim1 arcsin 1 srα = . 
Furthermore, the zones F1 and F2 must not overlap and thus the following inequality must hold 
 1 2α ≥ α  (29) 
The mechanical parameters must satisfy the following relations 
 1 10 c cdf≤ σ ≤ ;  2 10 c cdf≤ σ ≤ ;  3max 20 c cdf≤ σ ≤   (30) 
 1wl ydfσ ≤ ;  2wl ydfσ ≤ ;  3wl ydfσ ≤ ;  sw ydfσ ≤   (31) 
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where fck is the characteristic value of the compressive strength of concrete, fyk the characteristic value of the 
yield strength of steel and 

 1 0.85 ck
cd

c

ff =
γ

; 2 0.6 1
250

ck ck
cd

c

f ff  = −  γ 
 (γc=1.6) (32) 

Finally, in accordance with the Italian application document to Eurocode 2, the angle of the compressive stress 
on the concrete of the central zone F3 is assumed as variable between the following limits: 
 1 cot 2≤ ϑ ≤  (33) 
 
4 INTERACTION DOMAINS 
 
The resistance of reinforced concrete elements is evaluated by means of ultimate capacity interaction diagrams. 
The coordinates of the generic point of this diagram are calculated by mathematical non-linear programming 
problems which include the aforementioned equilibrium and boundary equations. With the aim of obtaining the 
interaction diagram, the maximum values of two of the internal actions under examination (e.g. axial force and 
bending moment) are first separately calculated. Hence, the range of values of these two variables is discretized 
and the maximum and minimum possible values of the shear force are calculated for each couple of the  
variables selected. The mathematical problem is non linear and, therefore, the solution of the problem depends 
on the starting values of all the parameters of the problem. In order to find a safe value of the shear resistance, 
the mathematical problem is solved with reference to many starting values of the parameters and the lowest 
value of the shear force is assumed as the shear capacity of the member. 
 
 
4.1. Example 
 
The proposed method is first applied to a circular reinforced concrete column characterized by R= 30 cm, 
Asl=30.54 cm2 (12 bars with diameter equal to 18 mm), c=5 cm, Asw=0.50 cm2 (hoops with diameter equal to 8 
mm) and s=10 cm. In addition, the compressive strength of the concrete is characterized by fcd1 =11.02 MPa and 
the yield strength of the longitudinal and transverse reinforcements by fy=374 MPa.  
The ultimate capacity interaction diagram of the cross-section is reported in Figure 5 with reference to an axial 
force of 700 kN. To define synthetically the ultimate capacity interaction between bending moment and shear 
force, the domain is divided into four zones which are labeled with numbers from 1 to 4. The segments which 
separate the zones identify points of the interaction diagram which are characterized by reductions of the 
ultimate bending moment equal to 25%, 50% and 75%. With reference to the points A and B of Figure 5, Figure 
6 shows the stress state of concrete and steel bars and the dimensions of the zones F1 to F3 of the cross-section. 
To highlight the influence of the longitudinal reinforcement on the resistance of the cross-section, the interaction 
diagram is reported in Figure 7 with reference to reinforcement ratios equal to 0.20, 0.30 and 0.40 cm²/m. The 
influence of the transverse reinforcement is also apparent in Figure 7 where the interaction diagrams are plotted 
for hoop spacing equal to 5 and 10 cm. Even if not shown in the figure, the dimension of the domain reduces for 
very high values of the axial force. 
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Figure 5. Evaluation of the control parameter as a function of the aspect ratio L/D 
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5. COMPARISON WITH LABORATORY TESTS 
 
The results of many laboratory tests have been compared here with those of the proposed analytical method. The 
laboratory tests refer to different amounts of longitudinal and transverse reinforcements and are described in 
detail in Ghee et al. (1989), Ascheim and Moehle (1992), Priestley and Benzoni (1996), Calderone et al. (2000), Chai 
et al. (1991), Berry et al. (2004), Kowalsky et al,. (1999), Kunnath et al. (1997), Lim and McLean (1991), Lehman 
and Moehle (1998), Priestley et al. (1994a), Priestley et al. (1994b) and Wong et al. (1993). The cross-section 
geometrical properties and the mechanical characteristics of concrete and steel considered in the application of 
the proposed method are deduced from these papers. 
A dedicated index has been defined for comparison of theoretical and experimental results. Specifically, on the 
M-V interaction diagram relative to the axial force of the experimental test the Authors have marked the point 
corresponding to the maximum experimental values of bending moment and shear force (Mexp, Vexp). Hence, a 
segment has been drawn from the origin of the coordinate system to the point marked. Owing to the static 
determinacy of the scheme, the points of these segments represent the internal actions experienced by the 
column during the test. The intersection of this segment with the M-V diagram defines the couple of internal 
actions corresponding to the prediction of the ultimate capacity of the member. If O indicates the origin of the 
coordinate system, P1 the point of coordinates (Mexp, Vexp) and P2 the point of coordinates (Mcalc, Vcalc) the 
parameter adopted for comparison is  

 1

2

OP
OP

δ =  (34) 

The values assumed by this parameter are reported in Figure 8. In the same figure the values are differentiated 
depending on the zone of the domain in which the points of coordinates (M, V) fall.  
With few exceptions the analysis highlights a good accord between theoretical and experimental results. This is 
evident in Figure 8 where the parameter is plotted as a function of the aspect ratio L/D, i.e. of the ratio of the 
shear span to the column diameter. The accord is obviously less accurate in elements with low aspect ratio. 
However, it should be noted that in these cases the prediction is always on the safe side. This is not surprising 
because the resisting mechanism of these latter models is chiefly characterized by direct travel of the force to the 
support, i.e. by arch action, while that simulated by the proposed model refers to the so called beam action.  

 Point B fcd2fyd σwl -fyd σc fcd1Point A fcd2fyd σwl -fyd σc fcd1

 
Figure 6. Stress relative to points A and B of the interaction diagram 
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Figure 7. M-V domains for different longitudinal and transverse ratios (N=700 kN) 
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CONCLUSIONS  
 
The paper proposes a mathematical model for the evaluation of the resistance of columns with circular cross-section 
subjected to combined axial force, shear force and bending moment. The model is based on the plastic approach and 
on the schematization of the resisting mechanisms by means of stress fields. In order to evaluate the reliability of the 
method the resistance of many columns tested in the last decades has been predicted by the theoretical approach. The 
comparison highlights that the theoretical model generally provides good estimates of the experimental results as long 
as the arch effect does not govern the structural behavior. 
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Figure 8. Evaluation of the control parameter as a function of the aspect ratio L/D 


