SI METRIC UNITS

CONVERSION FACTORS

Customary to 81

inches (in.) meters (m) 0.0254
inches (in.) centimeters {em) 2.54
inches (in.) millimeters (mm) 25.4
feet (It) meters (m) 0.305
vards {yd) meters () 0.914
niiles (miles) kilometers (km) 1,600
degraes (%) radians (rad) 0.0174
acves (acre) hectares (ha) 0.405
acre-feet (acre-f1) cubic meters (m?*) 1233
gallons (gat) cubie meters (m?) 3.79 X 108
gallons (gal) liters (1) 3.79
pounds (ib) kilograms (kg) 0.4536
tons (ton, 2000 1h) kilograms (kg) 2907.2
pound force (Ibf) newtons (N) 4.448
pounds per sq In. newtons per sq m 6895
(psi) {N/m?)
pounds per sq it newtons per sg m 47 .85
(psf) (N/m?)
foot-pounds (ft-1b) joules (J) 1.358
horsepowers (hp) watts (W) 746
British thermal units joules (J) 1055
(BT
British thermal units kilowatt-hours {(kwh) 2.03 x 10
(3TU)

DEFINITIONS

newton—force that will give a 1-kg mass an acceleration of 1 m/sec?
joule—work done by a force of 1 N over a displacement of 1 m

1 newton per sq m (N/m?) = 1 pascal

1 kilogram foree (kgf) = 9,807 N

1 gravity scceleration (g) = 9.807 m/sec?

Lare (a) = 100 m?

1 hectare (ha) = 10,000 m?

1 kip (kip) = 1000 1b
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Uneertainties are unavoidable in the design and planning of engineering
aystems. Properly, therefore, the tools of engineering analysis should include
methods and concepts for evaluating the significance of unc(-zrtaint},': on
gystem performance and design. In this regard, the principles of pmbab]pty
(‘;'md its allied fields of statisties and decision theory) offer the mathematical
hasis for modeling uncertainty and the analysis of its effects on engineering
design.

The uselulness of probability and statistics in the analysis of sampled
datn and for quality control purposes is well recognized; however, the
significance of probabilistic concepts transcends any specific application.
Indeed, beeause these concepts are necessary and vital to the proper
treatment of uncertainty, probahility and statistical decision theory have
especially significant roles in all aspects of engineering planning and design,
including: (1) the modeling of engineering problems and evaluation of
gystems performance under conditions of wneertainty; (2) systematic
(i(?V(‘](J])ll’u‘l’lt- of design eriteria, explicitly taking into account the signifi-
cance of uncertainty; and (3) the logical frameworlk for risk assessment and
rigk-henefit trade-off analysis relative to decision making. Our principal
aim is to emphasize these wider roles of probability and statistical decision
theory in engineering, wiih: special atfention on problems related to
construction and industrial management; geotechnical, structural, and
mechanical design; hydrologic and water resources planning; energy and
environmental problems; ocean engineering; transportation planning; and
problems of photogrammoetric and geodetic engineering,

We are concerned mainly with the practical applieations and relevance
of probability concepts to engineering. The necessary mathematical
coneepts are developed in the eontext of engineering problems and through
iltustrations of probabilistic modeling of physical situations and phenomena.
In this regard, only the essential principles of mathematical probability
theory are discussed, and these principles are explained in nonahstract
terms in order to stress their relevanee to engineering. Mathematieal rigor,
therefore, s minimized in favor of the applied aspects of probability; this is
necessary and essential to enhance the appreciation and recognition of the
practical significance of probability coneepts, For this purpose, the abstract

v



i PREFACE

mathematical concepts are presented and illustrated with a variety of
enginecering-type problems, and a large number of similar problems are
included as exercises. These are intended to illustrate and elucidate specifie
coneepts and, therefore, are necessarily idealized; real-world engineering
problems are often more complex than those illustrated.

The book is self-contained and thus is suitable for self-study by practicing.
engineers who desire a reading and working knowledge of the basic coneept
and tools of probability. The presentation of mathematical concepts via.
illustrative engineering problems should be especially helpful. We hope that
this approach will motivate engineers and enginecring students to realize
the potentials of probability concepts and to learn probability as a part o
their professional engineering background; we believe that these concept,
are essential tools for proper engineering analysis and design.

The subject is covered in two volumes. Volume 1 deals with the basic
concepts and methods of probability and statisties that are esstential for:
modeling engineering problems under conditions of uncertainty, whereas
Volume IT presents advanced concepts and applications, including statisti-
cal decision theory, extreme-value statistics, risk analysis, reliability :
analysis and probability-based design, probabilistic network analysis
queuing theory, and Mente Carlo simulation, :

The present volume includes nine chapters. Each chapter deals with |
certain topics that form the bases for subsequent chapters and conclude
with a discussion of the highlights of the chapter and its relation to th
subsequent chapters, Chapter 1 stresses the need for and significance of
probability in many engineering problems. Chapters 2 to 4 then develop the
basic concepts and essential analytical models of probability —in every case,
the coneepts are developed and iBustrated with engineering and physica
problems. These are followed by three chapters on the inferential methods
of statisties (Chapters 5 to 7), a chapter on Bayesian probability (Chap- |
ter 8), and a final chapter (Chapter 9) that introduces the elements of o
quality assurance. .

Volume 1 is designed for a first course in engineering probability and
statistics; only knowledge of elementary caleulus is required, and thus the .
material can be taught to undergraduate engineering students at any level,
preferably {in our opinion) at the sophomore level, The material (except =
Chapter 9 and certain starred topies) was originally developed for a course
on basie probability in engineering, required of all civil engineering
sophomores at the University of Iilinois at Urbana-Champaign. It may be
used for a course taught cither in the engincering departments or offered
for engineers by the departments of mathematies and statistics. Aithough :
the level of mathematical sophistication may not satisfly a mathematician,
it is appropriate for a first course in engineering probability. We think that
the first exposure of engineers to probabilistic concepts and methods should
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nmt‘h{ﬂ;\:f(t:lldlﬂi.: Oiilteizded for an advanced undergraduate course or a first-
“ZI.O ;;ra(ium;e gourse in engineering that deals with risk and decision
- Iysis in systems planning and design. . ' .
ani?th the customary and SI (systéme internationale) metric systems of
un{{g ‘ﬂ,[‘e used throughout th}e boo_k. When units are required, a prollem is
developed and discussed entirely in one of the Systesz. R

Numerous present and f()rmel: coll(;zagu(zs at the Unwermty of ].]iil”l‘(}!S who
have taught the basic cilvil engineering eourse (:{mtr]but.ed suggestums for
improving the presentation of the material la.nd su_gj;g.estmns for problems.
These colleagues include Professors M. Amin, A.-(,hllt(ny H. M. lilarara.,
N. Khachaturian, C. P. Siess, W. . Walker, Y K. Wen, and B.l(J. Yen.
Their suggestions and advice are greatly apprecmt@d. We are also md'ehtet,l
to the many students who learned the subject fl:()l‘ﬂ earhe-r draflts (in the
form of class notes with their various degrees of u:'sp(.érfectlm.)), and whose
Jearning experiences, questions, and comments contmblllted npt'n?asumbly
to the development, of the material. The constructive criticisms and
suggestions of several prepublication reviewers are g-mt.ef ullyraclinowlo-dged;
these include, in particular, the detailed suggestwns. of R. §exsm1th of
Corpell University, and the thoughtful comments of J. H. Mize of Okla-
homa State University, and J. T-P. Yao of Purdue University. Last, buf
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for many years as Department Head of Civil Engineering at the University
of Ulinos, provided the encouragement for and the academie atmosphere
conducive to rescarch and innovative developments.
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final manuscript and Eldon Boatz for preparing the illustrations.
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1. Role of Probability in

Engineering

1,1.  INTRODUCTION

Quantitative methods of modeling, analysis, and evaluation are the
tools of modern engineering. Some of these methods have become quite
elaborate and include sophisticated mathematical modeling and analysis,
computer simulation, and optimization techniques. However, irrespective
of the level of sophistication in the models, including experimental labora-
tory models, they are predicated on idealized assumptions or conditions;
henee, information derived from these quantitative models may or may
not reflect reality closely.

In the development of enginecering designs, decisions are often required
irrespective of the state of completeness and quality of information, and
thus are formulated under conditions of uncertainty, in the sense that
the consequence of a given decision cannot be determined with complete
confidence. Aside from the fact that information must often be inferred
from similar (or even different) cireumstances or derived through modeling,
and thus may be in various degrees of imperfection, many problems in
engineering involve natural processes and phenomena that are inherently
random; the states of such phenomena are naturally indeterminate and
thus cannot be described with definiteness. For these reasons, decisions
required in the proeess of engineering planning and design invariably
must be made, and are made, under conditions of uncertainty.

The effects of such uncertainty on design and planning are important,
to be sure; however, the quantification of such uncertainty, and evaluation
of its effects on the performance and design of an engineering system,
properly, should include concepts and methods of probability. Furthermore,
under conditions of uncertainty the design and planning of engineering
systers Involve risks, and the formulation of related decisions requires
risk-benefit trade-offs, all of which are properly within the province of
applied probability.

In this light, we see that the role of probability is quite pervasive in
engineering; it ranges from the deseription of information to the develop-
ment of bases for design and decision making. Specific examples of such

i
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Total Number Of Observations = 29
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Figure I.1 Histogram ol rainfall intensity (Esopus Creck Watershed, N.Y,
1918-1946) (a) In number of observations. (B) In fraction of total observations.
{¢) Frequency diagram of rainfall intensity (Esopus Creek Watershed, New York)
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Figure 1.2 Histogram of vield Figure 1.3 Histogram of ultimate shear

gtrength of intermediate grade rein- strength of fillet welds in structural con-
forcing bars; data from Julian (1957)  pections; after Kulak (1972}

information and engineering design and decision-making problems are
described in the following sections,

1.2, UNCERTAINTY IN REAL-WORLD INFORMATION

1.2.1. Unecertainty associated with randomness

Many phenomena or processes of concern to engineers contain random-
ness; that is, the actual outcomes are (to some degree) unpredictable. Such
phenomena are characterized by experimental ohservations that are
invariably different from one experiment to another (even if performed
under apparently identical conditions). In other words, there is usually
a range of measured or observed values; moreover, within this range certain
values may occur more frequently than others. The characteristics of such
experimental data can be portrayed graphically in the form of a histogram
or frequency diagram, such as those shown in Figs. 1.1 through 1.17, which
vepresent information on physical phenomena of significance in engineering.
(In some of these figures, specifically Figs. 1.5, 1.6, 1.7, 1.10, 1.13 1.14, and
1.17, theorctical probability density functions are also shown; the significance
of these theoretical functions and their relations to the experimental
frequency diagrams are diseussed in Chapters 3 and 6).

A large number of physical phenomena are represented in Figs. 1.1
through 1.17; these are collected here purposely to demonstrate the fact
that the natural state of most engineering information contains signifieant
variability.

The histogram, therefore, is a graphic empirical description of the
variability of experimental information. For a specific set of experimental
data, the corresponding histogram may be constructed as follows.

TFrom the observed range of experimental measurements, choose a
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Figure 1.4 Tistogram of modulus  Figure 1.5 Prequency diagram of fatigue
of elasticity of 2.6 lumber; after  lives of 76 S-T aluminum; after Pugsley
Galiigan and Snodgrass (1970) {19535)

range on the abscissa (for a two-dimensional graph) sufficient to include the

largest and smallest observed values, and divide this range into convenient

intervals. Then count the number of observations within each interval,
and draw vertical bars with heights representing the number of obser-
vationsin the respective intervals, Alternatively, the heights of the bars may
be expressed in terms of the fractions of the total number of observations in
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Figure 1.6 Trequency diasgram of wave  Figure 1.7 Trequeney diagram of

heights above mean sea level; after Cart-  midship bending stress from one typi-

wright and Longuet-Iigging (1956) cal record “S.8. Wolverine Staie” ; after
Hoffman and Lewis (1660}

1.2, UNCERTAINTY IN REAL-WORLD INFORMATION ¥

Table 1.1,

Year Rainfall intensity {in.)
1918 43.30
1914 53.02
1920 63.52
1921 45.93
1922 48.20
1923 50.51
1924 49 .87
1925 43.93
1926 46,77
1927 59.12
1928 54 .49
1926 47 .38
1930 i 40.78
1931 45.05
1932 50.37
1633 54.91
1934 51.28
1935 39.91
1936 53.20
1937 67.59
1938 58.71
1939 42,96
1940 55.77
1941 41.31
1942 58.83
1943 48.21
1044 4467
1945 67.72
1946 43.11

cach interval. For example, consider the annual {(cumulative) rainfall
intensity in the watershed area of the sopus Creek in New York, recorded
betwoen the years 1918 to 1946, as presented in Table 1.1, An examination
of these data will reveal that the observed rainfali intensity ranges from
39,91 1o 67.72 in. Choosing a uniform interval of 4 in. between 38 and 70
in,, the number of observations (and corresponding fraction of total
observations} within each interval are shown in Tabie 1.2.

Plotting the number of observations in a given rainfall interval, we
obtain the Aistogram of the rainfall intensity in the Ksopus Creek watershed,
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Table 1.2.

Number of Fraction of total

Interval observations observations
38-42 3 0.1034
4246 7 0.2415
46-50 5 0.1724
50-54 5 0.1724
54--58 3 0.1034
58-62 3 0.1034
62-66 1 0.0345
66-70 2 0.0680

Total = 29 1.0000

as shown in Fig. 1.la, whereas, in terms of the fraction of total ob-
servations the same histogram would be as shown in Fig. 1.1b.

For the purpose of comparing an empirieal frequency distribution
(as, for example, portrayed in a histogram) with a theoretical probability
density function, the corresponding Srequency diagram is required. This
may be obtained from the histogram by simply dividing the ordinates of the
histogram by its total area. In the case of the histogram of Fig. 1.1, we
obtain the corresponding frequency diagram by dividing the ordinates in
Fig. 1.1a by 29 X 4 = 116; or alternatively, by dividing the ordinates in
Fig. 1.1b by 4 X 1 = 4. The result would be as shown in Fig. 1.1¢, which
is the frequency diagram for the rainfall intensity of the Esopus Creek
watershed,
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Number Of Standard Devlatlon Number Of Stondard Davation
{a) Typhoon Ruby 16/7/1970 7SW-3 (b) Typhoon Georgia 13/9/1970 7TNE-4

Figure 1.8 Relative dispersions of measured pressure fluctuations on tall buildings
during typhoons; after Lam Put (1971)
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The histogram, or frequency diagram, gives a graphic pieture of the
relative frequencies of the various observations or measurements, For most
engineering purposes, cerfain aggregate quantities from the set of obser-
vations are more useful than the complete histogram; these include, in
particular, the mean-value (or average) and a measure of dispersion. Such
quantities may be evaluated from & given histogram; statistically, however,
these are usually obtained in terms of the semple mean and sample standard
demation, as deseribed in Chapter 5.

Clearly, if recorded data of a variable exhibit scatter or dispersion, such
a3 those lustrated in Figs. 1.1 through 1.17, the value of the variable
annot he predicted with certainty. Such a variable is known as a rendom
variable, and 1ty value (or range of values) can be predicted only with an
sssociated probahility.

When two (or more) random variables arve involved, the characteristics
of one variable may depend on the value of the other variable (or variables).
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Figure 1.1 Histograms of dissolved oxvegen (DO) defieit in Obio River; after
Kothandaraman and Ewing (1969)
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U Pairs of observed data for the two variables, when plotted on a two-
- dimensional space, would appear as in Figs. 1.18 through 1.22, which are
eharacterized by seatter or dispersion in the data points, called scattergrams.

“In view of such scalter, the value of one variable, given that of the other,
eannot be predicted with certainty. The degree of predictability will
-.::depend on {he degree of mutual dependency or correlation hetween the
“yariables, as measured (in the linear case) by the statistical correlation.
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Methods for evaluating such correlations are also embodied in statistical
analysis.

It should be strongly emphasized that the application of probability is
not limited to the deseription of experimental data, or to the evaluation
of the associated statistics (such as the mean, standard deviation, and
correlation). Indeed, the much more significant role of praobability concepts
15 in the utilization of this information in the formulation of proper bases
for decision making and design, In other words, when we are dealing with
information such as that illustrated in Figs. 1.1 through 1.22 which
requires probabilistic deseription, the proper utilization of this information
in engincering design and planning will necessarily require concepts and
methods of probability. For example, if a design equation involves random
variables, such as those deseribed in Figs. 1.1 through 1.22, the guantitative
analysis of their effects on, and the formulation of, the design will neees-
sarily involve probabilistic concepts.

1.2,.2.  Uncertainty associated with imperfect modeling and
eslimation

Engineering uncertainty, however, is not limited purely to the varia-
bility observed in the hasic variables. First, the estimated values of & given
variable {(such as the mean) based on observational data will not be error-
free (especially when data ave limited). In fact, in some cases, such estimates
may 1ot be much better than “educated guesses,” based largely on the
engineer’s judgement. Second, the mathematical or simulation models

1.3 DESIGN AND DECISION MAKING UNDER UNCERTAINTY 11
(for example, formulas, equations, algorithms, computer s%n‘m]a.i.i.(m pro-
ams), and even lahoratory models, that are often used n engineering
Bra’ n;j:- and to develop designg are idealized representations of reality;
i \,':Lil-g‘(’)us degrees, such models are imperfect r(‘apresenmi'.ions of the 1'ezl11
world. Consequently, predictions and/or ealeulations made on the basis
of these models may be illa(:cur:;u;e (to some un%{no\.\fnI(‘iegree)Iand th.a.s;
also contain uncertainty. In certain eases, the uncertainties 'asspfnattzd with
such prediction or model errors may T’f')‘,m“ch more significant than
those associated with the inherent variabilities. o o
AJl uncertainties, whether they are associated \\-'1?11 ‘1nh(3rent vartability
or with prediction error, may be ass ‘se.d' in sta.t,lstl sal t-{&i‘]l'l.S, and ‘%'.he
eyaluation of their significance on enginecring design EL(?(L()KH[:}]I&%h.{Zd using
concepts and methods that are embodied in the theory of probability.

anal

1.3. DESIGN AND DiECI SION MAKING UNDER UNCERTAINTY

1 information is of the type illustrated in IFigs. 1.1 through 1.17, in
which no single observation is representative, and evaluations and pre-
dictions must be hased on imperfect models, how should designs be for-
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mulated or decisions affecting a design he resolved? Presumably we My
assume consistently worst conditions (for example, specify the highest
possible flood, smallest observed fatigue life of materials, and so on) ang .
develop conservative designs on this basis. From the standpoint of system
performance and safety, this approach may be suitable; however, the.
resulting design could be too costly as a consequence of “compoundeq
conservatisme.” On the other hand, an inexpensive design may not eNstrg
the desired level of performance or safety. Therefore, decisions based oy
trade-off between cost and benefit (including tangible and intangible:
factors) are necessary. The most desirable soluiion is one that is optimal |
in the sense of minimum cost and/or maximum benefits. If the available.
information and evaluative models contain uncertainties, the require
trade-ofl analysis should include the effects of such uncertainties on a given
decision.

such sibuations are common to many problems of engineering design -
and planning; in this section we describe several examples illustrating &
some of these problems. The examples are idealized to simplify the dis-
cussions; nevertheless, they serve to illustrate the essence of the decision &
making aspects of engineering under conditions of uncertainty.

1.3.1. Planning and design of airport pavement

Consider, as the first example, the design of an alrport pavement
Among the many factors that have bearing on the design, the thickness of |
the pavement system (consisting of several layers of subgrade base material -
and the finished pavement) is one of the principal decision variables
In general, the usable life of the pavement will depend on the thicknes
of the system; the thicker the pavement system is, the longer its usefu
life will be. Of course, for the same material and workmanship quality, the :
cost will also increase with the thickness. On the other hand, a thin system |
will cost less initially, but the subsequent maintenance and replacement |
costs will be higher. Therefore the thickness of the pavement system may
be determined on the basis of a trade-off between high initial cost with
low maintenance, versus low initial cost but high replacement and main-
tenance costs, For the purpose of such trade-off analysis, the relation .
between the life of a pavement system and its thickness is required. How- -
ever, the pavement life is also a funetion of other variables, including |
drainage and moisture content, temperature ranges, density and degree
of compaction of the subgrade. Since these factors are random (see Fig
1.10 for the subgrade density), the life of the pavement cannot be predicted :
with certainty. Hence, the total cost (including initial and maintenance :
costs) assoclated with a given pavement thickness cannot be estimated |
with complete confidence; any meaningful trade-off analysis, therefore, .
should include consideration of probability.
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1.3.2. Hydrologic design

" sose that the protection of a large farm from flooding requires the
E’up!i qetion of a main culvert at the junction of & roadway and a stream.
(;On;{)’:,jsi’ml on the size (flow capacity) of the culvert is required; clearly,
;;C{ .,1/9 will depend on the high stream flow, \‘vhieh is a ‘func-tion of the
]:ainffi%] intensity in the watershed and the asfsomated runciff. If the culvert
i large enough to handle the largest possible ﬁow3 there would be no
danger t0 ﬂooding“; however, the (:o'st of (3on8t1‘lll(3t1ng .the culvert may
he prohibitively high, ql}d even d},u'mg thc} hezlvlest}'mﬂf:}]i t.i}c culvert
may be used only to a it"&(ttl()ﬂ of itg c.a{Ja(uF.‘}f-—w--Athat is, mferde&ngn wou.]d
pe wasteful and costly. On the other hand, if the (iulvel't. is too small, Its
cost may be low, but the farm i likely to he subject to serious ﬂoed%ng
every time there is a heavy rainfall, causing damage {o crops and erosion
of the upstream soil.

The decision would properly require probability considerations, for the
following reasons. First, the annual rainfall intensity is highly variable
{ns lustrated in Fig. 1.1}, and the prediction of the stream runoff may
he imperfect; consequently, the maximum stream flow (for example, in a
year) cannot be predicted with certainty. Assuming that the flow capacity
of a given culvert size can be determined accurately, the size of the culvert
would depend on the prebability of flooding within a given period (for
example, ten-years), The culvert size then may be delermined so that the
total expected cost, consisting of the initial cost of constructing the culvert
plig the expeeted loss from flooding and ervosion, is minimized. The expeet-
ed loss is a function of the probability of flooding, and hence the definition
of the total expected cost requires probability measures,

1.3.8.

In Fig. 1.8 we have an example showing that magnitudes of load (wind
pressures in the case of Fig. 1.8) may be deseribed with random variables,
whereas in Figs. 1.2 and 1.3 the strengths of structural material and
components are shown to be also random, and thus the resulting struetural
resistance will likewise be random. Even for this idealized situation, the
design of a structure (determination of how strong it should be) must
congider the question “1low safe is safe enough?”’—a question that theo-
retically requires the consideration of risk or probability of failure.

o he specifie, consider for example the design of an offshore drilling
tower, which is subiect to occasional hurricane forees. In such a cage, we
recognize that aside from the fact that the maximum wind effect during
& hurricane is random, the ocewrrence of hurricancs in a given coastal
region is also unpredictable, Henee, in determining the safety level for the
design of the tower, the probability of ocenrrence of strong hurricanes

Design of structures and machines
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within the specified useful life of the structure must be considered, in
addition to the survival probability of the structure during a hurricane.
The higher the hurricane force gets, the less frequent will be its oceurrence;
therefore, if a very strong hurricane is specified for the design, there may
be almost no chance of its occurring during the useful life of the drilling
tower. Consequently, what level of hurricane force should be used in the
design, and what level of protection would be adequate during a hurricane,
are decisions that clearly require trade-offs between cost and level of
protection in terms of risk or failure probability within the lifetime of the
structure,

In structural or machine components that are subject to repeated or
cyclic loads, the fatigue life (that is, the number of load cycles until fatigue
failure or fracture) of the component is also random, even at constant-
amplitude stress cycle as illustrated in Fig. 1.5. For this reason, the useful
life of the component is, to some degree, unpredictable. A design will
depend on the required life and desired level of reliability; for a given
design, the shorter is the required service life, the higher will be its reli-
ability against. possible breakdowns within the specified service life. Fatigue
life is also a function of the applied stress level; generally, the higher the
stress, the shorter the fatigue life. Consequently, if a desired life is specified,
the components could be designed to be massive so that the maximum
stresses will be low and thus assure long life. This approach will, of course,
be expensive in terms of material. In contrast, if the parts are under-
designed, high stresses may be induced, resulting in short life and thus
requiring frequent replacements.

The optimal life may be determined on the basis of minimizing the total
expected cost, which would include the initial cost, the expected cost of
replacement (a funetion of the reliability or probability of no failure), and
the expected cost associated with the loss of revenue incurred during a
repair (also a function of reliability). Having décided on the desired design
life, the components may then be proportioned accordingly.

1.3.4. Geotechnical design

Properties of soil material are inherently heterogeneous, and natural
earth deposits are characterized by irregular layers of various material
{for example, clay, silt, sand, gravel, or combinations thereof) with
wide ranges of density, moisture content, and other properties that affect
the strength and compressibility of the deposit. On the other hand, rock
formations are often characterized by irregular systems of geologic faults
and fissures that significantly affect the load-bearing capacity of the rock.

In designing foundations to supportstructures and facilities, the capacity
of the in situ subsoil and/or rock deposit must be determined. Invariably,
however, this determination has to be made on the basis of available geo-
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ogic information and data from site exploration with limited soil-sampling
reﬁli“:mp of the natural heterogeneity and ivregularity of soil and rock

B("f-_({q' 1:1'10 eapacity of the subsoll could vary widely over a foundation
(J-epf)hll];;;'f’(J\f(}l', heeause the required load-hearing capacity must mvariahly
mLe.(.:ssl.im:-l't(é(] on the basis of very limited information, such (-zs1ljima.t-(zs are
ubject 1o considerable uncertainty. As & (‘,()]18(3(‘1[1{?!1{'1(?, .2121 estln_la-te ma.:y
apme risk of overestimating the actual capacity of the soil deposit
;un( :;1‘1,(;; in view of this fact, the safety of a foundation designed on the
lfl‘\lbﬁ of 4sm!h estimates may not be assuz'e;d wil'-l_l complete confidence,
ﬁnlcss a suflicient margin of safety 1s provided. On 1:.}'1?, other hand, an
excessively large safety margin may vield an I.Elll](,‘,(}(-’,.ssﬂ-l‘lly (,’.ost,]y_mpport.
gystent. Therefore the required sal e?y margin {or design may be \?l(é\.\’(-‘,(,i as
;{ problem invo}ving the trade-off between cost and tolerable risk or
])[.U})u.l')i]ilf\? of fallure,

he

1.3.5. Conslruction planning and management

Many factors in the construction industry are subject to variability f'm(l
meertainty, some of which cannot be controlled. For example, the required
duraions of various aclivities In 2 econstruction projeet will depend on the
availability of resourees, including iabor and equipment and their respee-
tive productivity, on weather conditions, and on availability of material.
None of these factors ave completely predictable, and thus the durations of
the individual activities as well as the project duration cannot be estimated
with mueh precision or certainty (sce for example Fig. 1.16); such durations
must be deseribed as random variables. Therefore, in preparing a bid
for a project, i conservative (or pessimistic) time estimates are used,
the bid price may be teo high, thus reducing the chances of winning the
bid. On the other hand, if the bid is based on an optimistic estimate of
the project time, the contractor may lose money in a successful bid. What
degree of conservativeness should the contractor exercise to maximize his
profit potential? Realistically, this decision may be hased on a consideration
of probability—-the bid price may be based on a target time corresponding
to o specified probability of completion.

13.6. Photogrammetrie, geodetie, and surveying measurements

All practieal measurements are subject to errors, which can be classified
as random and systematic errors, Systematic errors can be eliminated or
minimized by evaluating them and applying corrections. However, the
magnitude and propagation of random errvors, inherent in making measure-
ments, ean be established and analyzed only on the hasis of probability
theory, Sueh a statistical approach is indeed the only reliable means for
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determining accuracy once measurements are refined heyond instrumey,
capabilitios.

The aceuracy and preeision of measurements can be improved by usip
nstruments capable of keener measuremnents and by adopting more refing
observational procedures. Depending on the importance and cost of
project, the additional cost of inereased aceuracy and precision may g
may hot he Justified.

The method of least-squares is used widely in photogrammetry, geodesy
and surveying; it is used, for example, in the adjustment of photogran
metric blocks, geodetic networks, and leveling eircuits, A prior estimatig
of the accuracy of geodetic coordinates, for example, is essential befop,
finalizing the selection of the configuration of triangulation and trilateratio
projects,

In conjunetion with photogrammetrically produced digital tereai;
models, least-square fitting using polynomials, potential functions, o
trigonometric functions is often used to mathematically deseribe the sup
face of the object under study. The object may he a terrain under considery
tion, such as a possible airport site, an animal for which the surface area
to be determined, or a trileaflet heart valve under study to develop pr
thetie valves,

In remote sensing, statistics is used extensively in pattern recognitio
techniques where the objective is to classify the image spectrally. Sampl
spectral data from the scene is statistically clustered into distinet groups
This grouping is then often extended to the entire image through th
application of diseriminate function analysis.

L4, CONTROL AND STANDARDS
In order to assure some minimum level of quality, or performance, o
engineering products or systems, inspections and standards of aceeptane
are necessary, Clearly, if the standard is too stringent, it may unnecessarily
inerease product cost or its adherence and enforcement may be difficult
on the other hand, if the standard is too lax, the quality of the produet may
be overly compromised. Also, if the control variables or design variable
are random, what constitutes a stringent or nonstringent standard is no
immediately clear; in these cases, the acceptance standards ought to be
developed also on the basis of prebability considerations,

For example, in constructing an earth embankment, practical stand
ards for acceptability of the compaection should recognize the variability i
the density of compacted material, as illustrated in Fig. 1.10. Acordingly
an aceeptance sampling plan may be developed based on probability
considerations and taking into account such variability.

_Sta.]} (I.

1.5, CONCLUDING REMARKS 7
To pontrot the quality of streams, the parameter most commonly llf?(id as
‘ lgm\. of pollution is the coneentration of dissolvgd oxygen {IX}) in the

water, which is random as illustrated in Fig. 1.11. Among en-
;,-t;r(—!fim ntalists there is & growing realization of the need for probahilistic
wwmiiils ;)l' stream quali%:_\,; {for (?;\(am[.)le, Loucks and Lynn, 1966; Thayer,
19[36)‘-. meks and Lynn {196GG) proposed the following as an example
pl.(}hnbilis{it: stream standard:

The dissolved oxygen coﬂcent?‘a.tio-.n in the st?‘ea??z .(,21(,7‘?'?7‘({ any 7 consecutive
day period must be .s'uch'tha.i: {4) the ;uv'obabi.l?,f,‘;:{ of ils be'mg_l.ess t]zc‘.z-n
4 mg/1 for @iy one day 1s less thai O.QO ; waed (41) the probability of s
being less than 2 g/ L for any one day 4s less than 0.1 and for two or more
entive days 18 less than 0.05.

a M

CONSE

To ensure the quality of coneréte material in _z‘einforced (30{1(31‘@1:@ 0013-
sepuetion, the Building Code of the Ameriean Conerete Institute (ACI
:313-71) requires the following.

The strength level of the conerete will be considered satisfactory if the aver-
ages of all sels of three consecutive strength test resulls equal or ea:ceed.the
required f and no individual strength test reswlt falls bglow the required
1 by more than 500 psi. Kach strength lest result shall be lhe average of
Two eylinders from the same sample lested of 28 days or the specified earlier
age.

These statements imply the need for probability and statisties in the
assurance of quality conerete,

1.5 CONCLUDING REMARKS

This chapter has emphasized the importance and role of probability
concepts and methods in engineering, The examples enumerated and
deseribed in Sections 1.2 to 1.4 should serve to emphasize the pervasiveness
of such concepts in engineering planning and design. Tn particular, it should
be stressed that the deseription of statistical information and estimation
of statistics, such as means and variances, are not the only applications of
probability theory; the muel: more significant role of probability concepts,
iy faet, Lies in its unified framework for the guantitative analysis of un-
certainty and assessment of assoelated risk, and in the formulation of
trade-off studies relative to decision making, planning, and design.

The many examples presented also serve to Musirate, with real data
and realistic engineering problems, that randomness of real-world phen-
omen and impoerfections of engineering predictions and estimations are
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facts: of life. Consequently, uncertainties associated with such randomueg,
and mperfections are unavoidable in engineering planning and design.
I*‘inall_y, it Is important to allay any misconception that extensive day
are requived to apply probability coneepts; the usefulness and relevance of
such concepts are equaily significant, irrespective of the amount of dat, ;
or guahty of information. Probability is the conceptual and theoretiea?'
basts for modeling and analyzing uncertainty. The availability of data anq.
quality of information will affect the degree of uncertainty; ‘].mwever the
lack of sufficient data should not lessen the usefulness of px:ohabiiit'.y af: th:
proper tool for the analysis of such uncertainty and for the evaluﬁtion of:
its effects on engineering performance and design. '
In the ensuing chapters of this volume, as well as those in V olume It
the probabilistic concepts and methods necessary for these purposes zn'e:
devetoped. .

2. Basic Probability Concepts

2.1, EV ENTS AND PROBABILITY

2,1,1. €haracteristics of probability problems

16 may be recognized from the discussions in Chapter 1 that when we speak
of probability, we are referring to the occurrence of an event relative to
other events; in other words, there is (implicitly at least) more than one
possibility, sinee otherwise the problem would be deterministic. For quan-
titative purposes, therefore, probability can he considered as a numerical
measure of the likelihood of oecwrrence of an event relative to a set of
alternative events,

Accordingly, the first requirement in the formulation of a probabilistie
problem is the identification of the set of all possibilities (that is, the possi-
bility space) and the event of inferest. Probabilitics are then associated
with specific events within a particular possibility space.

To illustrate the various aspoets of a probabilistic problem, as char-
acterized above, consider the following examples.

EXAMPLE 2.1

A contractor is planning the purchase of equipment, including bulidozers,
needed for a new project in a remote area. Suppose that from his previous experience,
he figures there is a 509 chance that each bulidozer can last at least 6 months
without any breakdown. If he purchased 3 bulldozers, what is the probability that
there will be only | bulldozer left operative in 6 months?

First we observe that at the end of 6 months, the number of operating bulldozers
may be 0, 1, 2, or 3; therefore this set of numbers constitutes the possibility space
of the number of operational bulldozers after 6 months. However, the probability
of the various possible outcomes cannot be readily determined from the information
that each bulldozer has a 50% chance of remaining operative after 6 months. For
this purpose, the possibility space must be derived in terms of the possible status of
cach bulldozer after 6 months, as follows.

Il we denote the condition of each bulldozer after 6 months as G for geod and
B for bad conditions, the possible statuses of the three bulldozers would be

GGG—all three butldozers in good condition
GGB-—first and second bulldozers good, and third one bad
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GBB

BBB--all three bulldozers in bad condition
BGG

BBG

GBG

BGB

In this case, therefore, there are a total of 8 possibilities. Since the condition of
bulldozer is equally likely to be good or bad, the 8 possible statuses of the 3 byl
dozers are also equaliy likely to occur. It is worth noting that among the 8 possip)
outcomes, only one of them can be realized at the end of 6 months; this means iy
the different possibilities are mutnally exclusive (we shall say more on this point i,
Section 2.2.2).

Among the 8 possible statuses of the 3 bulldozers, the realization of GBRB, BGr
or BBG is tantamount to the event “only one bulldozer is operational.” And since
each possibility is equally likely to occur, the probability of the even! within
above possibility space is 3/8.

EXAMPLE 2.2

In designing a lefi-turn Tane for eastbound traffic at a highway infersection, ag
shown in Fig. E2.2, the probability of 5 ar more cars waiting for left turns may be
needed to determine the length of the lefi-turn lane. For this purpose, suppose that
over a period of 2 months 60 observations were made (during periods of heavy
traffic) of the number of eastbound cars waiting for left turns at this intersection,
with the following results.

No. of cars No. of observations  Relative frequency

0 4 4/60
1 16 16/60
2 20 20/60
3 14 14/60
4 3 3/60
5 2 2/60
6 1 1/60
7 0 0

8 0 0

Conceivably, or theoretically, the number of cars waiting for left turns, during
heavy traffic hours, couid be any positive integer number; however, in the light of
the above traflic count, the possibility of 7 or more cars waiting for left turns is not
likely to oceur at this intersection.

On the basis of the foregoing results, the observed relarive [freguency (tabulated
in the third column above) may be used as the probability of a particular number of
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rs waiting for left turns. Then the probability of the event *'5 or more cars waiting”
ar
5 2/60 - 1/60 = 3/60.

EXAMPLE 2.3

In the simply supported beam 4B shown in Fig. E2.3, the load of 100 kg can be

laced anywhere along the beam. In this case, the reaction at the support 4, R,
clearly can be any value between 0 and 100 kg; thert?folre any .m‘u.nber between 0
and 100 is & possible reaction value for R, and thus Is its posmb:llty‘ space.

An event of interest then may be that the reaction is in some spec_nﬁed interval;
for example, (10 £ R, <20 kghor (R, > 50 kg). Therefore, 1fa_part1cular value of
R, is realized, the event {defined by an interval) conlguung t!_us value Qf RA.has
og:ul'rcd, and we can speak of the probability that R , w.al], or will not, be in a given
interval. For instance, if we assume that the 100-kg load is equally llk'ely 1olbe p]gced
anywhere on the beam, then the probability that the value of R ; will be in a]golven
interval is proportional to the interval; for example, P(10 £ Ry £ 20) = A% =

0.19, and P(R, > 50) = & = 0.50,
imm {kilograms)
A L B
+ S
RA?_ IOm (meters) %RB

Figure E2.3

TFrom the foregoing examples, the following special characteristics of
probabilistic problems may be observed.

1. Every problem is defined with reference to a specific possibility space
(eontaining more than one possibility), and events are composed of
one or more possible outcomes within this possibility space.

2. The probability of an event depends on the probabilities of the in-
dividual outeomes within a given possibility space, and may be derived
from the probabilities of these basic outcomes.

In Sections 2,2 and 2.3, we shall present the mathematical tools pertinent
Lo and useful for cach of these purposes.



22z BASIC PROBABILITY CONCEPTS

2.1.2. Calculation of probability

From the examples discussed above, it can he observed that in caleulating
the probability of an event, a basis for assigning probability measures to
the various possible outeomes is neeessary. The assignment may be baseq
on prior conditions (or deduced on the basis of prescribed assumptions),
or based on the results of empirical observations, or both,

In Examples 2.1 and 2.3, the probabilities of the possible outcomes were
based on prior assumptions. In the case of Example 2.1, each of the possible
statuses of the 3 bulldozers was assumed to be equiprobable, each equal tq
4 (consistent with the prior information that each buildozer is equally
likely to be operative or nonoperative after 6 months) ; whereas, in lixampla

2.3 the probability that the reaction B, will be in a given interval wags’
assumed to be proportional to the interval length (consistent with the
assumption that the position of the 100-kg load is equally likely to be any.:

where along the beam). However, in Example 2.2 the probability of the

number of cars waiting for left turns is based on the corresponding observed

relative frequency, which is determined from empirical observations,
It should be emphasized that we shall treat probability as & measure
necessary and useful in problems where more than one event or outcome

is possible. In particular, we shall avoid the philosophieal question of the -

meaning of a probability measure, and concern ourselves merely with the

utilitarian aspects of probability and its mathematieal theory (see Section 5
2.3) for modeling problems under conditions of uncertainty, in the same

sense that we use the factor of safety to effect engineering design without

worrying about its real meaning, or employing Newton’s second law of

motion without being concerned about the meaning of mass and force.
The uscfulness of a ecalculated probability, however, will depend on the

appropriateness of the basis for its determination. In this regard, we observe

that the validity of the a priori basis for caleulating probability depends on

the reasonableness of the underlying assumptions, whereas the empivical

relative frequency basis must rely on a large amount. of observational data.
When data are limited, the relative frequency by itself may have limited
usefulness.

A third basis for calculating probability involves the combination of
intuitive or subjective assumptions with experimental observations; the

proper vehicle for this combination is Bayes' theorem (see Section 2.3.4)
and the result is known as the Bayesian probability (sce Chapter 8y,

2

2.2. ELEMENTS OF SET THEORY

Many of the characteristics of a probabilistic problem can be defined
formally and modeled suceinetly using elementary notions of sets and the
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ical theory of probability, In this and the following seetion
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cample points are individuaily di:_a‘(:ret(a entities and (:t_)unt.a.i)l{_s ii 111 .ﬂ}(:
;;,,;(,il1uous ase, the sample space 13 composed of a continuum of sample
Pmm?i%c‘rc!tu sample space may be finde (that s, composed of a ﬁni't.(:

. l;(';‘ ;of' sample points) (n'vv.'n.‘,fi.ni!e (that is, with a countably inﬁm.te
]mm}}(:r of sample points). The possible status of the three bulldozers in
;ill.j;:n]?)le 2.1 is an example of & finite discrct--e samphz_sllnf.lﬁe ; (r.ach of t};(
sossible statuses is a sample point, and the eight possibiln,l(zs‘(:(')-]iof,tlvc y
it.msl,imie the corresponding san‘l}l)l(t space. Other (.~>lcalmpl(!:°, ()f‘ fml.l,e sample
gpaces Aare asTollows, (1) The winner in a c()nlpei‘xlt-lvellndldmg for a .(:0?—
struetion project will be among the firms sul.m‘_n{;i,mg_; ‘;nd-s for the p_r(,)‘](z(,%,..
The sample spaee then consists of all the p()ss‘l%:)lu ‘%:)1(1 winners, wh](zhl z:u e
Qm finite number of firms involved in the bidding; z.n, this casc, ‘ea-('.h of th(
frms is a sample point, (23 The number of days in o yoear \\'lﬂ'{ f%'eezmg
temperature in Juneau, Alaska, is limited to 365 days; each day of t-h_(-‘._‘)_rez?t'
then is a sample point, and collectively all the days of. the year constitute
the sample space. Exampie 2.2 ig an illustration of a discrete sample spuee
with eountably infinite number of sample points; the number of cars waiting
for left tm'nsl could, theoretically, be any integer number from Zero Lo
infinity. Other examples are the {ollowing: (1) the number of f.la\\'s in 2
given ivngth of weld, and (23 the number of ears erossing o Fn]} 5?1'1(19,'(! until
the next necident, on the bridge. In cach case we have an 111{11}1{:0 number
of discrete posgibilities. 'There may be none or only a few ﬁE‘LWS in the weld,
or the number of flaws could be very large; similarly, an accident may oeeur
with the first car erossing the toll bridge, or there may never be an accident
on the bridge. o

In a continuous sampie space, the number of sample points is offectively
always infinite. Tor example, (1) in considering the Iocation on a to‘ll
bridge where o (raffic aceident may oceur, cach of the possible lo ',;Li_'.mns 18
a sample point, and the sample space would he the (’,(,)I]tillln,lll’} o'f points on
the bridge; and (2} if the bearing capacity of a clay deposit is between
LB sl (tons per sq {1} 10 4.0 tsf, then any value within the range 1.5 to
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4.0 is a sample point, and the entire continuum of values in this ran
constitutes the sample space.

Whether a sample space is diserete or continuous, however, an even
abways a subsct of the appropriate sample space; therefore an event, alway
contains one or more sample points (unless it is an impossible event), ap
the realization of any of these sample points constitules the occurrence of 1}
corresponding event. Finally, when we speak of probability, we are alway,
referring to an event within a particular sample space,

The following example clarifics the preceding notions in more definitiy
terms.

EXAMPLE 2.4

Consider again a simply supported beam A8 (Fig. E2.4a).

(a) If a concentrated load of 100 1b can be placed only at any of the 2-t intery
points on the beam, the sample space of the reaction R, will be as shown in Fj
E2.45. In this case, the sampie space of R; consists of distinct sample points.

Let us also consider the sample space of R; and Ry; (that is, all possible pairs
values of R ; and Rj); in this case, any pair of values of R ; and Ry, such that R,
Ry = 100 belongs to the sample space, which is shown in Fig. E2.4¢.

(b) If the load can be placed anywhere along the beam, the sample space of R
can be represented by the line between 0 and 100 (Fig. E2.4d), whereas the corr
sponding sample space of R, and Ry is the straight line shown in Fig. E24

100 b
A { 3 ) (] '3 £l [} 1 3, ] B
s i
} 20t * . . . - . . - . . . .
RAJ iﬂs O 20 30 40 50 60 7O 80 W 00
Figure E2.4a Figure E2.4b6 Sample space of K4
Ry
100(
Semgple Spoce
L of Rn and RE!
B 0 20 a0
— i i "
T T
- i [
o} \\bj(} Votuas OF Ry Somple Spoce Of Ry

Al

Figure K2.4c Figure E2.4d  Sample space of B,
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(20, 80}

Al Paint Poirs On
This Line =Sample
Space Of Ry ond Ry

Q, 10, 20, 30, 40, 50, 60, 70, 80, 90,100, 120
140, 150, 180, 180, 200, 210, P40, 270,300 1b

3

o 100 Ra

Figure 2.4de Figure E2.4f Sample Space of Es

we can then speak of the event that R, will be between, say, 20 and 40; or that
(R, Rys) will be between (20, 80) and (40, 60). _ s e

{c) Mexi consider that the toad can be 100 1b, 200 lb, or 300 1b, an ‘113 }?951 501.3
can be at any 2-ftinterval on ihe beam. The sample space of R 1!1011 contains the
values listed in Fig. E2.4f, whereas the sampie space of ..R‘_,ﬂfln(iﬁ]j_,g is represented by
{he two-dimensional coordinates of the points shown in Tig. E2.4g.

However, if the load can be placed anywhere along the beam, .thel} the sample
space of R and Ry would be described by the three fines shown in Fig, E2.4h.

(d) §f the load can be any value between {00 and 300 1b, then the sample space o_f
R, contains all vaiues between 0 and 300 [b, as represented by the line in Fig. E2.4/,
whereas the sample space of R and Rj;; would be the shaded area shown in Fig.

E2.4j.

Rp
300 30
e
&
200 ¢ 200
’ ° g?}ﬁ‘;llz gg:anc': (I){} -Sample Space Of Ry And Ry
¢ & R, and Ry
4 [
100
Qn ° L]
nO L] a
L] L]
& L
@ e
o ha o
o 100 200 00 Ry 0 100 200 00 Ry

Figire E2.4y Figure E2.4h
&
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-Sample Spoc.
0f Ry and Ry

3.2 Venn Diagram with several events. (a) Two events, Aand B, ()

};‘iaure By ) ] ;
100 'l‘iﬁ'ﬂc events, A, B, and ¢

Al : ——— 1 I )
' son, whereas I contains all the sample points outside of £. A Venn
) o) 2 A ' 3 . . -
¢ 30016 0 100 3007 R Eiﬁgl‘ﬁm with two (or more) events would appear as in Iig. 2.2,
Lit

Figure E2.4i Sample space of B, Figure E2.4] 2.2.2. Combination of events

In many practical problems, the event of interest may be some combination
(Sf other events, For instance, in EX}LI'HI)FG 2.1 thre‘ (:'vcnt of al lea@t 2 bull-{
dozers operalive after 6 months may be of interest, This can be (:(l)xlslczered ‘a.s
{he combination of 2 bulldozers oper(‘.ttsz}ue or 8 bulldozers operative. Such an
avent is the “union” of the two individual events. ' _ N

There are two basic ways that cvents may be combined or derl‘ved fmjm
other events: by the union or indersection. Consider two events Erand B

The wion of By and By, denoted B, U Ky, is another eve_nt' that moeans the
accurrence of Ky or Ey, or both, In other words, #, U ]5?2.18 the ,?ubset‘of
gample points that belong to Fy or 12 (In set theory, or 1s used-in an tr-
clusive sense, which means and/or).

Special events., We define the following special events and adopt ik
notations indicated helow.

L. Impossible event, denoted ¢, is the event with no sample point, It ;
therefore an empty set in a sample space,

2. Certain event, denoted 8, is the event containing all the sample points
In a sample space; that is, it is the sample space itself. :

3. Complementary event E. For an event ¥ in a sample space 8, the com.

plementary event, denoted E, contains all the sample points in S thy S
are not in £, '

The Venn diagram. A sample space and the events within it can be Examples: (1) In describing the state of SL11)£)1y of consi-;ru‘ctlofi m‘%tel‘jzll%
represented pictorially with the Venn diagram-—a sample space is repre- '_:i - if By represents the sh(}rta,gp (3f conerete and Fy 1‘01)1'080:111‘.&,‘. u?(—éj;lolt-’a;gb;f
sented by a rectangle; an event E is then represented symbolically by a @ steel, then the union By U Fy is th_e slilm‘ta.gc 7‘01‘ concrete or bt:(,(-:. ‘,.01 )(; :)
closed region within this rectangle, and the part of the rectangle outside . (2) In a 20-mile length of an m-l 1)1;"{{31111(3, if By stzm'ds for li!alm‘g(, ml )m]x ((JN
this closed region is the corresponding complementary event E. See Fig. 2.1. 7 to15 and Fy stands for i.ea.kage in m}ie 1'() to 20, then E) U Iy means leakage
In other words, the event E contains all the sample points within the closed . anywhere along the entire 20-mile pipeline.

£

i i . Figure 2.3 Venn diagram for union of events K and By
Figure 2.1 A Venn diagram v Figure 2 g
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Figure 2.4 Venn diagram of intersection of events Fy and I,

The Venn diagram for the union of two events E, and E. would be the
shaded region shown in Fig. 2.3. 1t follows, therefore, that the portion of =

the rectangle outside of the shaded region in Fig. 2.3 is the complementary
event #y U Ky; that is, the complement of £, U B,

The union of 3 or more events means the occurrence of at least one of
them, For example, transportation between Chicago and New York may :
be by alr, highway, or railway. If we denote the availability of these modes ©
of transport, respectively, as 4, H, and R, the available means of trans.
porting material between these two cities can be denoted as (A UH U Ry, -

The dntersection of By and By, denoted B, 0 K, (or simply K y), is alse =
an event that means the joint occurrence of B, and 5,; in other words,

Il Fy is the subset of sample points belonging to both &, and K.

xamples: Referring to the examples deseribed above, (1) B M, means
the shortage of concrete and steel: (2) Ey¥, means the leakage in mile 10 &
to 15 along the pipeline; whereas, A HR means all three methods of trans- .

port between Chieago and New York are available.

In terms of the Venn diagram, the intersection of two events ¥y and B -

would be the double-hatched region shown in Fig, 2.4,

EXAMPLE 2.5

In Example 2.2 the sample space is the set {0, 1,2, 3, ...}; that is, theoretically |

the sample space contains all non-negative integers.

If E, = the event of more than two cars waiting for left turns;

that is, the subset {3,4,5, ..}
and
E, = the event between two to four cars waiting for left turns;

that is, the subset {2, 3, 4}

then the union E; U E, is the subset {2, 3,4, ...} whereas the intersection EE

is the subset {3, 4}.
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300 Ry 0 100 300 Ry
Figure E2.6b Event B

R
8}

AUB

o

0 100 300 R, 0 100 300 R,
Figure E2.6c Union AUB Figure E2.6d Intersection AB

EXAMPLE 2.6

In the last case of Example 2.4, where the load can range between 100 and 300 1b,
the sample space of the reactions R4 and Ry is shown in Fig. E2.4;.

If 4 = event {R, > 1001b}
and
B = event {RB > 100 lb}

the events 4 and B would be the subsets containing all point pairs of R, and Ry
shown in Figs. E2.6a and E2.66, respectively. Observe that the events 4 and B
are defined within the sample space of R; and Ry. Then the union 4 U B contains
all point pairs in the shaded region of Fig. E2.6¢; whereas the intersection 4B is
the shaded region shown in Fig. E2.6d. In the present example, Figs. E2.6a through
E2.6d serve also as the corresponding Venn diagrams.
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Figure 2.5 Mutually exclusive evenis By and By

Mutually exclusive events. If the occurrence of one event precludes

the occurrence of another event, then the two events are mutually exclusive;

this means that the corresponding subsets will have no overlap, as shown

in the Venn diagram of Fig. 2.5. That is, the subsets are “disjoint.” The =

intersection of two mutually exclusive events 2y and sy, therefore, is an
impossible event; that is, 15 = ¢. IZxamples of mutually exelusive events
are {1) making right turn and left turm at a street interseetion; (2} Hood
and drought of a river at a given instant of time; {3) failure and survival
of a structure to a strong motion earthqualke.

Three or more events are mutually exclusive if the oceurrence of one
precludes the oceurrence of all others. For example, if there are three
possible locations for a new airport, then the choices among the three sites
are ntnally exclusive.

Collectively exhaustive events., T'wo or more ovents are collectively
exhaustive i the union of all these events constitute the underlying sample
space,

EXAMPLE 2.7

Two construction companies a and b are bidding for jobs. Let A denote the
event that Company a gets a job and B denote the event that Company & gets a job,
Draw the Venn diagrams for the sample spaces of the following:

(2) Company a is submitting a bid for one job and Company b is submitting a bid
for another job.

(b} Companies a and b are submitting bids fo the same job, and there are more than
2 bidders for the iob.

(©) Companies @ and b are the only two bidders competing for the same job.

(a) Since companies ¢ and b may each win a job, the Venn diagram is as shown
in Fig, £2.7a, The overlapping region indicates that both companies ¢ and b win
jobs. In this case, eventls 4 and B are not mutually exclusive.

(b} Company a may win the job, or co mpany & may win the job, or some other
bidder wilt win the Jjob. But, if company a wins the job, then event B will never occur,
Therefore event 4 precludes the occurrence of event B, and vice versa; hence
events A and B are mutually exclusive. There is no overlapping region in the Venn
diagram for events A and B, as shown in Fig. BE2.75. In this case, the complementary
event of (A4 U B) means that neither company a nor company b wins the job.

(c} In this case, the sample space only contains the two evenis A and 8. If event

| Fig

wre E2.7a
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Figure E2.7b

Figure E2.7¢

A does not occur, that is, if company a loses, then we know definitely that B hE}tS
ccurred. Events A and B are again mutually exclusive; also, 4 and B are coiiecuve! (}jr
2xhauslive, that is A w B = S. Hence the corresponding Venn diagram wou

appear as in Fig. E2.7¢.

2.2.3. Operational rules

Sets and the relationships among sets are governed by certain Qperational
rules. In this connection, we adopt the following symbols to designate sets

or their associated operations:

U union
f intersection

C  belongs to, or is contained in
™ contains
E  complement of E

We have seen in Section 2.2.2 that two or more sets can be combined '%n two
ways—through union and iniersection. These and the process of taking the
complement constitute the basic operations on sets. The rules that govern

these operations are the following:

Equality of sets. Two sets arc equal if and only if .both sets contaln
exactly the same sample points, On this basis, we immediately observe that

AU =4
ANd=0¢ (2.1a)

I
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Figure 2.6 Fvent A
sets A and B

Also, referring $o Fig. 2.6, we have

AUA = A

ANA = A (2.10)
Furthermore,

AUS =8

An S =A (2]0)

Complementary sets.  Trom Fig, 2.1, we observe the following relative
to an event /£ and its complement K-

LUl =8
B0l = ¢ (2.2)
(B = B
(that is, the complement of the complementary event is the original event).

Commutative rule.  Union and interseetion of sots are commaudalive;
that is,
AUB=DBUA
AB = BA

From the Venn diagram of Fig. 2.7, we sce that A URB and BU A clearty
contain the same set of sample points and, therefore, are equal subsets
within 8. Similarly, the same is true of AB and BA.

Associative rule.  Union and interseetion of sets are associative; that is,
(AuB)ul =Au(Bud)
(AB)C = A (B
The equality of the sets (A UB) U and A U (BUCY is clear from the

Figure 2.7 Venn diagram of fwg
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Figure 2.8 Venn diagrams for (A UBY UCand 4 U (B U ()

venn diagram of Fig. 2.8, whereas from Ifg. 2.9, we see that (AB)C =
A{BC).
pistributive rule.  Union and intersection of sets are distributive; that is,
{AUBC = ACUBC
(ABYuC = (AuCY(BUO)

f

In this case, the two cqualities of the sets are verified by the Venn diagrams
of Figs. 2.10 and 2.11, respectively.

These operational rules imply that the rules governing the addition and
multiplication of numbers apply to the union and intersection of sets.
By assuming the following equivalences—unton for addition and intersec-
tion Jor madtiplication (that is, U--» 4 and N~ ¥ }—the rules of conven-
tional algebra then apply to operations of sets and events, Therefore, in
aecordance with the hierarchy of algebraie operations, intersection takes
precedence over wnion of events, unless parenthetically indicated otherwise.
1t should be emphasized, however, that conventional algebraie operations,
such asg addition and multiplication, have no meaning relative to sets
and events. Moreover, there are operations and operational rules that
apply to gets that have no counterparts in conventional algebra of nwm-

A(BC)

Double Hatched Reglon={AB)C Double Hatched Region = A (BC)

Figure 2.9 Veun diagrams for (48} and A(BC)
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Double Hatched Region= (AUB)C Shoded Region=ACUBC

Figure 2,10 Venn diagrams for (AUBYC and AC U B

%7 = AUC A =8UC
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TS oS b el
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Shaded Region = ABUC Double -hatched Region = { AUCI(BUC)

Figure 2,71 Venn diagrams for AB U Cand (4 UOHB U )

bers. For example, AUuA = A and A nAd = A, Another case in point
is the second of the distributive rules deseribed above, which says that

(AuC)y(Bul) = ABUACUCBuCC
= ABUC
whereas, ins conventional algebra, we have

{a--c)(b+e¢) =abdtac+ch+d=ab+te

Finally, another rule that also has no counterpart in conventional algehra =

is the de Morgan’s rule, deseribed below,

de Morgan’®s rule.  Another rule in set theory is the de Morgan’s rule, |
which relates sets and their complements. For two events By and By, this &

rule says that

To prove this relation, consider the two events Fy and E: as shown in Fig,
2.12, The unshaded region in g, 2.12a is clearly 5, UK. The Venn
diagramg with X, and F; are individually shown in Fig, 2.12b, the inter-

-

scetion of which is the double-hatched region in Tig. 2.12e. Comparing
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i

| Double- hatched
{¢) Arpq = EI Ea

Figure 2.12 Venn diagrams for de Morgan's rule

Stated in general, de Morgan’s rule is

LUk, = B, R, (2.3a)

vk, v,

Applying Eq. 2.3a to By, By, . . ., B, we have

B UE, V.. UE, = BB, ... I,

Hence taking the complements of both sides of this equation, de Morgan's
rule ean be stated also as
By B, = EUE. . Uk, (2.3)
In view of Fgs. 2.3c¢ and 2.35 we have the following duality relation.
The complement of wnions and {nlersections ts equal to the infersections and
uniong of the respective complements. For examples,

AUBC = AnBC = A(Buly = ABUAC
(AUB)C = (AURYuC = (AB)uC

il

(Bl U ) (B U Ey) = EvBLEy UKy = BByl 0 ks

EXAMPLE 2.8

: A chain consists of two links, as shown in Fig. E2.8. Clearly, the chain will fail
ilfeuhe:' link breaks; thus, if £y = breakage of dink 1, and £, = breakage of link 2,
then

Failure of chain = E,  E,
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F e 0 Link (1) Link {2) . F

Figure E2.8 A two-link chain

and no failure of the chain is, therefore, £; w E,. However, no failure of the chajy
also means that both links survive; that is,

No failure of chain = £, n E,
Therefore

which is an illustration of de Morgan’s rule.

EXAMPLE 2.9

The water supply for a city € comes from iwo sources 4 and B, The water ig

transported by a pipeline consisting of branches I, 2, and 3, as shown in Fig. E2.9,
Assume that either source alone is sufficient to supply the water for the city.
Denote  E; = failure of branch !

I, = failure of branch 2

Ey = failure of branch 3

‘Then shortage of water in the city would be caused by F,E, £y Therefore, by :

de Morgan’s rule, no shortage means that

B, O By = (B, U E)E,

in which (E; © E,) means the availability of water at the junction, and E4 means :

no failure of branch 3,

Source A

3 Clty
2 Junctlon c
Source B

Figure E2.9 Water-supply system

2.3. MATHEMATICS OF PROBABILITY

2.3.1. Basic axioms of probability; addition rule

It may be pointed out that in all of our discussions thus far, we have tacitly ©
assumed that a nonnegative measure, called probability, is associated with |

every event. Implicitly, we have also assumed that such measures possess

certain propertics and follow certain operational rules. Formally, these
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roperties and rules are embodied in the mathematical theory of probability.
Asin other branches of mathematies, the theory of probability iz based on
cortain fundamental assumptions, or axioms, as follows.

For every event I7 in a sample space S, there is a probability

PEY 20 (2.4)
gecondly, the probability of the certain cvent S is
P8y = 1.0 (2.5)
pinally, for two events £y and fy that are mutually exclusive,
P{IELVUEY = P + P{E:) (2.6)

fquations 2.4 through 2.6 then constitute the basic axioms of probability
theory. These are essential assumptions and therefore are not subject to
prool. However, these axioms and the resulting theory must be consistent
with and useful for real-world problems. In this latter regard, we observe
that in essence, the probability of an event is a relative measure (that is,
relative to other events in the same sample space) ; for this purpose, there-
fore, it iz convenicnt or natural to assume such a measure to hoe ;'lonn(_sga.tive
as prescribed in Eq. 2.4, Morcover, because an event K is always defined
within a preseribed sample space 8, it is convenient to normalize the
probability of an event with respeet to S (the certain event), as specified
in Eq. 2.5, On the basis of Fas, 2.4 and 2.5, it follows that the probability
of an event I is bounded hetween 0 and 1.0; that is,

0 < P(E) <10

With regard to the third axiom, Iiq. 2.6, we observe that from a relative
frequeney standpeint, if an event K oceurs »y times among » repetitions
of an experiment, and another cvent Ky oceurs mp times (in which K and
By are mutually exclusive), then F; or £y will have occurred (n1 + ng)
times. Thence, on the basis of relative frequency, we have

. R M Re
P(EIUE) = - = —
n n n

= PR A P )

It should be emphasized that the mathematical theory of probability is
coneerned with the logieal bases for the relationships among probability
measures. All such relationships and the deductive character of the theory
¢an be developed entirely on the basis of the three assumptions deseribed in
Egs. 2.4 through 2.6,

Applying Liq. 2.6 to K and its complement &, we have

PEVUE) = P(E) + PIE)
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N £Ey

Figure 2,13 Union of By and B\ %

but since B U & = 8, we have, on the basis of Eq. 2.5,
PEUVE) = P(S) =10
Hence the usefui relation
PEYy =1 — P 2.7
More gencrally, if £y and £ are not mutually exclusive, then

P GE) = P + P () — PO (2.8)

Fquation 2.8 follows from Eq. 2.6 by observing from Tig, 2,13 that
KU By = EU B, where the events £ and Bl are mutually exclusive;

thus, aceording to Kq. 2.6,

P{EU By = PEY + PEE)
But
T By U BTy = SEy = By

and £, and B 15 are mutually exclusive; hence
P (BB = P — P(FEs)
thus obtaining lq. 2.8,

EXAMPLE 2.10

A contractor is starting on two new projects—;jobs 1 and 2. There is some un-

certaintly on the completion time for each fob:in one year, each job may be definitely
completed, completion guestionable, or definitely incomplete. Let us denote these 5
situations as A, B, and C, respectively, lor each job. Describe the sample space for
the state of completion of the two jobs; that is, describe all the possible situations of -

jobs 1 and 2 alter one year.

I cach of the possibilities for the two jobs is equally likely (o occur at the end of
one year, what is the probability that exactly one job will be definitely completed in 2

one year?
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S
BA  CA M) BA  CANE,
A8 BB CB aB| BB cB
ac BC ccC acj BC  CC
&

Figure E2.10a Sample space Figure E2.10b

Sample space is shown in Fig. E2.10a, Since the event of exactly one job completed
contains the four sample points AB, AC, BA, and CA, this probability is equal to
4 % 1/9 = 4/9.

In this problem, if we let £ be the event that job 1 is definitely completed, and K,
that job 2 is definitely completed, then

E, ® {AA, AB, AC)

E, @ {AA, BA, CA}
The Venn diagram with events E and E; will appear as in Fig. 2,104, If the sample
points are cqually likely to occur, then P(E;) = 3/9, P(E;) = 3/9, and according

to Bq. 2.8
' POEy U Ey) =39 +3/9 — 19 = 59

which can be verified since (E, v E,) @ {AA, AB, AC, BA, CA},

EXAMPLE 2.11

For the purpose of designing the left-turn lane (for eastbound traffic) in Example
2.2, the 60 observations (made at random) of the number of cars waiting for left
turns at the intersection, yielded the following results:

No. of cars No. of observattons Relative frequency

0 4 4160
1 16 1660
2 20 20/60
3 14 14/60
4 3 3/60
5 2 2160
6 1 1/60
7 0 0

8 0 G
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let
£
£y = 2 10 4 cars waiting for left turns

i

more than 2 cars waiting for left turns

Since the number of cars waiting for left turns are mutually exclusive events, g
simple extension of Eq. 2.6 (see Fq. 2.6a, pg. 41) and using the above relative {ve-
quencies to represent the corresponding probabitities, we obtain

14 3 2 i 20

P(El)“ga"f“G—O“}-gﬁﬁ‘EB*@

. 20 14 3 37
P(bg) e -(;6 e

6 760 T %0
Also, in terms of the number of cars waiting for left turns,
E\E; = {3, 4}
and thus
14 3 17

PEE) =&+ 56 T &
Then, according o Eq. 2.8,
20 37 740

PENVE) =646 6~ 60

In this case, we also observe that

EyWE,>42,3,4,..}
Hence
20 14 3 2 i 40
)L‘U". . R —_ e EE cneen
PUEL M Ey) 60+60 F60+60+60 60

Thus, verifying the result obtained above using Eq. 2.8,

EXAMPLE 2,12

In Example 2.6, events are represented by areas in the sample space of R, and R,
as shown in the Venn diagram of Fig, E2.12. i the probability of an event is pro-
portional to its “area™ (this corresponds to the assumption that the sample points
are equatly likely), we obtain the following.

1
Total “area™ af sample space = 5{(300)2 -~ (100}

= 40,000
Then, referring to Fig. E2.12, we have
1 F)
Leom: |
A = S =
A 40,000 2
Similarly,
l
P(B) =
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Rg

Ra
Figure E2.12
hereas
) P{AB) = 5(100% }
(AB) = 40,000 8
and
40,000 ~ $(100)® 7
Pd v B) = 40,000 8
By Eq. 2.8, we also obtain
PAVE =5+5 7573

Tor three events Ky, Iy, Ey,
P U R UED = PLEUE:) U By
= P(F U + P — PLELUE)E;]
= P(E) + P& + P(E;) — P(ER) — P(E\Iy)
— P(E ) + P(ELLE) (2.9)

The preceding procedure may be extended to the union of any number of
events; however, for n events, the probability of the union may be obtained
more convenienily using de Morgan’s rule, as follows:

PlEyUE U UE) =1 — P UE U UR)
=1~ P(E:E. . E) (2.10)

Of course, if the n events are mutually exclusive, extension of the third
proposition (q. 2.6) vields

PEVEU. . UE) = > P(E) (2.6a)
i=1
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e

3]

e

Figure E2,13

EXAMPLE 2.13

Under the Joad F, the probabilities of failure of ihe individual members a, b, and
¢ of the truss shown in Fig. 2,13 are 0.05, 0.04, and 0.03, respectively. The failure
of any member(s) will constitute failure of the truss.

Assuming that failures of the individual members are statistically independent,
so that the failure probability of two or more members is equal to the product of the
respective member probabilities (see Eqg. 2.15, pg. 47), determine the failure prob-
ability of the truss.

Denoting the failure events of the three members as A, B, and €, we have P{AY =
0.05, P(B) = 0.04, and P(C) = 0.03. And wilh the assumption of statistical inde-
pendence,

P(AB) = (0.05)(0.04) = 0.0020
PACY = (0.05)0(0.03) = 0.0015
P(BCY = (0.04)(0.03) = 0.0012
and
P{ABCY = {0.05)(0.04)(0.03) = 0.00006

Then, according to Eq. 2.9,
P(failure of truss) = P(4 W BV O}
= 0.05 + 0.04 4 0.03
—(.0020 — 0.0015 — 0.0012

+0.00006
= (.F1536

This probability may also be obtained (more conveniently) with Eq. 2.10 as follows:
PAVUBUC) = | — PABC)

In the present case (see Eq. 2.16), we have

P(ABC) = P(DPBIPIC)

= (1 — Q.05 — Q.04 — 0.03) = 0.88464
Hence
Plailure) =1 — 0.88464 = 0.11536
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2.3.2. Conditional probability s multiplication rule

The probability of an event may depend on the oceurrence (or non-
jeeurrence) of another event, If this dependence exists, the associated
[ Ll ) , o .

p}-n])zlbih[;y is a condiltivnal probabilily,

$

Figure 2.14  Reconstituled sample space By

In the sample space of Fig. 2.14, the conditional probability of ¥, as-
euming H2 has occurred, denoted P (5| E.), means the likelihood of
realizing & sample point in ) assuming that it belongs to Fe. Effectively, in
other words, we are interested in the event ¥ within the reconstituted
sample space s, Henee, with the appropriate normalization, we obtain the
conditional probability of By given Fs as

P(EE)
LB | By) = s 2,11
Pl | Iy) P (2.11)

To clarily this concept, consider the following examplos.

EXAMPLE 2,14

Consider a 100-km (kilometer) highway, and assume that the road condition and
traflic volume are uniform throughout the 100-km distance, so that accidents are
equally likely to occur anywhere on the highway. Define the events

A = an accident in kilometers 0 to 30
B = an accident in kilometers 20 1o 60

Since accidents are equally likely anywhere along the highway, it may be assumed

that the probability of an accident ina given interval of the highway is proportional

to the distance of the interval. Therelore, if an accident occurs on this 100-km
highway,

30 40

PLA) 5= and  P(B) = —-

=155 and PO =15

Now lel us pose the question: “if an accident occurs in the interval (20, 60),
what is the probability of the event 47" In this case, we are interested in the prob-
ability of 4 on the condition that £ lus occuired; this is simply the proportion of
the distance that belongs to B within which A4 is also realized, Clearly, from Fig.
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Figure F2.14

E2.14, this conditional probability is

10 10/100

P | B) = 40 ~ 40/100

But, in this case, 10/100 = PABR), and 40/100 = P(B), thus illustrating Eq. 2.11,

EXAMPLE 2.15

Consider again the problem of three bulldozers, described earlier in Example 2.1
let

£ = event that the first bulldozer is operational after 6 months
E =2 bulldozers are operational after 6 months

If the sample points are all equally likely, then referring to the Venn diagram shown
in Fig. £2.15, the conditional probability of E given Fis

. 2

PEVF) =2

R
This is simply the ratio of the number of sample points in EF refative to those in F,
Hlustrating therefore the notion that # is taken as the new “sample space.” Similarly,

the conditional probability of ¥ given £ would be

P(F

~ 2
E)y=2Z2
) 3

However, if the sample points are not equally likely, then the associated probability
measures must be used in the caleulation of the conditional probability. For example,
if the probability of a bulldozer's operating at least 6 months is 80%, then (assuming

A
666 { 6GB ) 6BB
b 1
GBG [ BGB

|
{ B6G | BBG

\\__\N, s

B8B

Figure E2.15

2.3, MATHEMATICS OF PROBABILITY 45

tistical independence; see g, 2.15, pg. 47) the probabilities of the vartous sample
atistice

sl{;mls will be as follows; B
P P(GGGY = 0,512

P(GGB) = 0.128
P(GBB) = 0.032
P(BBB) = 0.008
P(RGG) = 0.128
P(BBG) = 0.032
P(GBG) = 0.128
P(BGB)Y = 0.032

In this case, P(Ell £) must reflect the probabilities of the sample points in EF
relative to those o the sample points in £ Accordingly, we have

F) = P(GGB U GBG) _ P(EF)
PUENF) = PIGGG W GGB v GBG s GRB)  P(F)
0.128 + 0.128 _0256 oo

T 0512 + 0,128 1 0128 ¥ 0,032 _ 0.800

It may be emphasized that the conditional probability is merely a
generalization of the probability of an event, When we speak of the proba-
bitity of an event [, it is implicitly conditioned on the sample space S,
["This is illustrated in Example 2.14; the probabilities P{4) and P (B) arc
based on the eondition that an accident oceurs in the 100-km highway.]
Ta be more explicit; P () should be written

) P(ES)
P =

But since IS = %, and P(8) = 1.0,
PE|S) =P

In other words, conditioning on the sample space § is presumed to be under-
stood; however, when the probability is conditioned on an event other than
the original sample space, the reconstituted “sample space” must be made
explicit,

We observe also that

. . PyFy) | P (B
(B - PUE | ) == s
P(Ey | Es) + Py | B P P

TP

[P{{E v E) By} ]

P{ls)

1.0
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Therefore }
Py Be) =1~ P(E | KB (2.12)

which is a generalization of Kq. 2.7. It is important to recognize that in
Eq. 2.12 the conditioning event £y is the reconstituted sample space; for
this reason we must make sure, when applying q. 2.12, that the event
(for example, By) and its complement refer to the same reconstituted
sample space Ky, For example, observe the following:

PBy | By 1 — Py By)
PUENE) =1~ PO | By

EXAMPLE 2.16

1t has been observed that vehicles approaching a certain intersection in a given
direction are twice as likely to go strajghr ahead than to make a right turn; also,
left turns are onty half as likely as right turns,
Assume that these conditions are valid for any vehicle. Then if a vehicle approaches
the intersection in the indicated direction, we can ask the following.
(a) What are all the possibilities (that is, the different directions for the vehicle
to take)?
Straight ahead = F;
Turn right = E,
Turn left = £,
(b) What are the respective probabilities?
2

1
rE =L Py =2 ey =)

(c) What is the probability of a right turn if a car is definitely going to make a
turn?
PIENE, VE)] P
P(E, UE) ~ PE, ULy

P, | By E) =
On the other hand, if a vehicle is definitely turning at the intersection, the probability
that it will nor turn right is
P(Ey| By W E) =1 = P(F, | E, W By

s ] o

wH N
W —

Statistical independence. I the occurrence (or nonoecurrence) of one
event does not affeet the probability of another event, the two events are
statistically independent, ‘Yherefore, if E, and F» are statistically

2.3. MATHEMATICS OF PROBABILITY 47

independentx*
P(E‘g | El) = .P(Ez)
d (2.13)
an P(E\| E;) = P(Ey)

Multiplication rule.  From Eq. 2.11, the probability of the joint event
ErEs is
P{E\Ey) = P(E| Ey) P(Ey)

or (2.14)

P{E\E:)

If

P(Ey | E) P(E)

If Ex and K, are statistically independent events, then this multiplication
rule becomes

P(E\E;) = P(E,) P(Ey) (2.15)
For three events, the multiplication rule is
P(E\EyEy) = P(E\| BuEy)y P{E, | Es) P(E;) (2.140)

or
P(E\EE) = P(EVE, | By) P(ES)
and if the events are statistically independent,
P(ErEsEsy = P(E)) P(E;) P(Ey) (2.15a)
We would expect, that if B: and K, are statistically independent, their
complements B, and. Ey would also be statistically independent. This can
be verified in the case of two events as follows:
P(E;Ez) P(El UE:;) = 1 et P(E; UEQ)
L~ [P(Ey) + P(E:) — P(E) P(Ey)]
(1= PEIL - PE)]
= P (B P(E) (2.16)
Finally, we should emphasize that all the mathematical rules pertaining

to probability apply equally to conditional probabilities defined within the
same reconstifuted sample space, including specifically the following:

P(E UE[A) = P(E\|A) + P(By | A) — P(EJE, | 4) (2.17)
Equating the two expressions in Eq. 2.14a and letting £, = A, we have
P(EE,| A) = P(E, | E,A)P(E,| A) (2.18)

il

i

* This way of defining statistical independence is intuitively more direct. Although this
18 somewhat unconventional, because statistical independence is usually defined mathe-
matically in the form of Kq. 2.15, the Mathematical Association of America (1972)

Buggested the use of the conditional definition of statistical independence—that is,
Eq. 2.13.
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Link | iink 2

& O= Y
0G0 ibs ©

¢

1000 Ibs
Figure E2.17

EXAMPLE 2.17

than 1000 ib. Suppose that the probability of this happening to either link is 0.5
What is the probability of failure of the chain?

Let £, and E, denote the failure
failure of the chain is

P(Ey W Ey) = P(Ey) + P(E) — P(EyE,)
= 0.05 + 0.05 — P(E, | E)P(E))
=010 — 0.05 P(E, | Ey)

We observe that the conditionai probability P(E, I ) is required; this will depend =

on the degree of mutual dependence between E, and Ey. For example, if the Jink

are randomly selected from two suppliers, then E; and F, may be assumed to be

statistically independent; thus P(E, fEl) = P(E;) = 0.05. In such a case,

PV E) =01 —0.05 x 0.05 = 0.0975

Conversely, if the two links were fabricated from the same steel bar by the same i
manufacturer, the characteristics of the two links can be expected to be quite 3
similar. In the extreme case, the strength of the links may be assumed to be identical; &

in this case, P(F, | E;) = 1.0. Thence
PEy U Ep) + 010 — 0.05 x 1.0 = 0.05

which is the same as the fajlure probability of one link.

The failure probability of the chain system, therefore, ranges between (.05
(which is the failure probability of a single link) and 0.0975, depending on the : :
conditional probability P(Eg[ E3), which is a function of the degree of correfation &

between the strengths of the two links.

EXAMPLE 2.18

Two power gencrating units ¢ and b operate in parallel to supply the power g
requiremenis of a small city. The demand for power is subject to considerable -
fluctuation, and it is known that each unit has a capacily so that it can supply the .
city’s full power requirement 75% of the (ime in case the other unit fails. The &
probability that both units ;7

probability of failure of each unit is 0.10, whereas the
will fail is 002,

Consider again a chain system consisting of two links (Fig. E2.17). If the applieq - ;
force is 1000 Ib, it is obvious that any link in the chain will fail if jts strength is Jege o

of links 1 and 2, respectively. Therefore the |
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f there is failure in the power generation, what is the probability that the city
Villl pave its supply of full power?
¥

Let A = event unit « fails
B = event unit b fails
Then P(AY = P(B) = 0.10
PABY = 0.02
hence 0.02
= w5 e (3,20
P(A|B) = PB| A) 576

The conditional probability that when there s failure, only one of the two units
failed is

PABVABL A UB) =PAB| A U B) + P(AB| A © B)

PIAR(A w B)]

PIAB(A U BY]
= P4 v B)

P(A v B)

. P4B)y  P(B)

CPATBY  P(A VB

_P(B| AP(A) + PUA| BYP(B)

T P(A) + P(B) = P(B] AP(A)
0.8 x 0.1 + 0.8 x 0.1

Ol 401 02 x0.1
0.08
= 2(0—-_18) = .89

Thus the probability that the city will have suppiy of full power, when there is
failure in the power generation, is 0.89 x 0.75 == 0,67.

EXAMPLE 2.19

Before a section (say ' mile long) of a pavement is accepted by the state H{gb\yay
Department, the thickness of an 8-in. pavement is inspected th spfecdfat:(}?
compliance by ultrasonics reading (see Fig. E.?,,.l9). This is done at e{ve: Y 110im1k e
point of the pavement; each #;-mile section will be accepted if the measured thick-
ness is at least 7.5 in.; otherwise the entire section Wll]‘ be rejected.

Suppose, from past experience, that 90 %_Of alt sections constructed by the C(.).l.l-
ractor were found to be in compliance with specifications. However, Lhe uitra-
sonics thickness determination is only 809 reliable; that is, there is a 203 chance
that a conclusion based on uitrasonics test may be eIToneous. .

(@) What is the probability that a particular section of the pavemeni is well
constructed (that is, at least 7.5-in. thick) and will be accepted by the Highway
Department?
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1/10 mile
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Figure E2.19

Let

G = actual thickness of pavement is at least 7.5 in.

= measured thickness = 7.5 in.

S
f

The statement “‘reliability of the ultrasonics test is 80 %" may be interpreted to mey

PG| A) = 0.80

and B
PG| A) =080
Hence ~
PG A) =1 =080 =020
Based on the contracior’s past record, we may assume that 9077 of his work wj :
have satislactory ultrasonics readings; hence
PlAY = 0.90
The event ol interest is (A its probability, therefore, is
P(GA) = P(G | A)P(A)
= (0.80)(0.90) = 0.72
() What is the probability that a section i3 poorly constructed (1hat is, has thick
ness less than 7.5 in.) but will be accepted on the basis of the ultrasonics test?
In this case, we have _ ~
P(GAY = PG| AP(A)
= {0.209(0.90) = 0.18

EXAMPLE 2,20

The settlement problem of a steel frame may be idealized as follows. A and B2 '

represent two footings resting on soil (Fig. 122.20). Each footing may either remain

al the original level or settle 5 ecm. The probability of settlement in cach footing is
0.1. However, the probability that a footing will settle, given that the other has:

settled, is 0.8.
(a) The possible conditions of’ the two footings are as follows:
AB A settles, B setiles
AB A does not settle, B settles
AB A settles, B does not settle
AR A doces not settie, & doees not scttle
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Figure E2.20

{b) The probability of settlement (that is, either 4 or B will settle) is
P(A W B) = P(A) + P(B) — P(AB)
w P(A) + P(B) — PLAP(B | A)
=01 4+ 00 —0.1 x 0.8 =012

{¢) If we are interested in the event £ that differential settlement (that is, a differ-
ence in the level of the two footings) occurs, the event will consist of AB and”A48.

Since these two events are mutually exclusive,

P(E) = P(AB) + P(AB)
= P(BIP(A | B) + P(P(B | A)
= (0.D[1 = P(A | B)] -+ (0.1 = P(B| )]
= (0.1)(0.2) + (0.1)(0.2) = 0.04

EXAMPLE 2.21

The foundation of a tall building may fail either from bearing capacity, or by

excessive setliement. Let B and S represent the respective failure modes. If P(B) =
0001 and P(S) = 0.008, and P(B I &) == praobability of failure inn bearing capacity
_ given that it has excessive settlement == Q.1, determine (a) the probability of failure
. of the foundation; (b) the probability that the building has excessive settlement but

ne faiture in bearing capacity.
@ PFY = PB VS =PB)+ PS) — PBNS)

= P(B) + P(S) — P(B| 8)P(S)
= 0000 + 0.008 — (0.1)(0.008)

0.009 - 0.0008 = 0.0082

PR S)PS)

[ — P(B|IPS)

= (1 — 0.D(0.008) = 0.9 x 0.008 = 0.0072

i

{b) PS M B)

i

i

“In this problem, the conditional probability £(53 ‘ §) cannot be larger than 1/8;
- WD you explain why?
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EXAMPLE 2,22

There are two streams Howing past an industrial plant. The dissolved oxygen, Do
level in the water downstream is an indication of the degree of pollution caused by b
the waste dumped from the industrial piant. Let A denote the event that stream g g o2
polluted, and B the event that stream 4 is polluied. From measurements taken on the =
DO level of each stream over the last year, it was determined that in a given day E

3

— 2 i D e
P(A) = 3 and P(B) = )

and the probability that at least one stream will be polluted in any given day ig

P(A U B) = 4/5.

{a) Determine the probability that streany a is also polluted given that stream p &

is polluted.

(b) Determine the probability that stream & is also polluted given that stream 4

is potluted.
First, we compute the probability that both streams are polluted. Since

P(A U B) = P(A} + P(B) — P(A N B)

we have
P(A N B) = P(A) + P(B) — P(A U B)
2,3 47
5 45T
Therefore
_PAa By 720 7
PA|B) == PBY 3[4 T IS
and
3
PB| A = PANR 720 7

PA) T2 T8

In other words, stream b is very likely to be polluted when stream a is polluted,
whereas chances are less than 509 that stream a wili be polluted when stream b

1s polluted.

2.3.3. Theorem of total probability

Sometimes the probability of an event A cannot be determined direetly.

However, its occurrence is always accompanied by the oceurrence of other :
» 1, such that the probability of A4 will depend on
which of the events %, has occurred. In such a ease the probability of A

evenls I9;, ¢ == 1,2,

will be an expected probability (that is, the average probability weighted

by those of £:). Such problems require the theorem of {otal probability. By ]

way of introduction, consider the following example,

EXAMPLE 2,23

Suppose that there is considerable uncertainty concerning the fate of the U.S.

supersonic transport (S87T) project. Whether or not the United States will have a

P
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reial SST by 1980 will depend on the result of the presidential etection in
e ppose also that if the Democrats win the election, the prob.abxllly of an
]980 is only 209, whereas il the Republicans win in 1976, this probability
i

ot g
gsT by 19

M 0 " . - - 0 Q]
wﬂ(]‘]l;ijy /wilhom knowing the party that will win the 1976 election, we cannot say

ir robabili i 5 Yo I , if the two major
- the required probability will be 2097 or 70 % Iif)yvevel, i :
’hi[igfgh'uﬁ eq?xal ci1a111ces of winning in 1976, 1his probability would be the average
4ri1es
2?9.20 and 0.70; or
P(SST by 1980) = 0.2(0.5) + 0.7(0.5) = 0.45
i e favor [0 win i i be reasonable (o
: Republicans are favored by 3 to 2 to win in 1976, it WGI:Ild' ble to
elifglzh?he f)rcceding probabilities by the respective odds of winning the election;
W

thus

nereas, if the Democrats are favored 3 to 2 to win the election, the corresponding
;roi)abi]iiy would be
P(SST in 1980) = 0.2(0.6) + 0.7(0.4) = 0.40

Formally, consider n» mutually exclusive and collectively 'exhau‘st-ive
events By, Ha, ..., F.; that is, K, U 10 U RF l.:],, = 8. Then if A4 is an
event also in the same sample space (see Fig. 2.15), we have

A= AS

= AW UV, UK

= ABLUAR U, UAE,
where A, ARy, ..., AE, are also mutually exclusive, as ean be seen in
the Venn diagram of g, 2.15. Then

P(A) = P(AE) + P(AFE) + «+« - P(4E))
and by virtue of the multiplication rule, g, 2.14, we obtain the fotal
probability theorem
PAY = P{A | E) P(E) + PA | By PUE) 4+« +PA | BDHP(E)
(2.19)

£q

3 H - )l ") il
Figure 2.15 Venn disgram with events 4 and J, B ., ., KB,
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Also, by virtue of Eq. 2.18, the total probability of a conditioned event can
be shown tobe P(A | B) = P(A| E\B)« P(E,| B) + ... + P(A | E.B;

(2.19&)

EXAMPLE 2,24

_ Figure E2.24 shows one direction of two interstate highways 7, and I, mergin
into i Assumle that [; and 7, have equal capacities; the rush-hour traffic, howevey
is somewhat different, so that during rush hours ’
PUL) = Plexcessive traffic in L) = 109
P(l,) = P(excessive traffic in L) = 20%

_ Also, denoting P(f; [ L) as the probability of excessive traffic in f,, given exces. 2
sive traffic in I,, we have o

P | 1) = 50%
and

P(I,] 1) = 100%

(a) If §he capacit.y of I is the same as that of 7, or /,, what is the probability =
of excesswe't:l‘afﬁc in I,? Assume that when I and I, are carrying less than thejr -
traﬁ_ic capacities, I, may be exceeded with probability 2097,

First, we observe that this probability will depend on the traffic conditions in 5
and 1y, which may be 1,1, L1, 1,1,, or I,T,, with respective probabilities as follows: &

PULT) = PUL| 1P = 0.5 x 0.2 = 0.10
P = PUL | 1)P(L)
= [t = PO | P = 0.5(0.2) = 0.10
P(LT) = P(L | )Py
= [1 = P(fy| INIP(L) = 0
P(I.Jz) =~ [P(!ilz) + P(illz) + P(ﬁ[z)]
=1 — (0.1 + 01 +0) =080
Clearly, the traffic in 7, will be excessive when the traffic in I, or Iy, or both, is

excessive, Also, we have P(Ial LL) = 0.20.
Then

P(Iy) = PU3 | hi)P(LE) + Py | Li)PULL) + Pty | LI)P(LT)
+P({; | LipP(LL)
= 1.00(0.10) + 1.00(0.10) -+ 1.00(0) + 0.20(0.80)
= 0.36

Figure E2.24
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p) If the capacily of fy is fwice that of I, or I, what is the probability of exces-
¢ traffic in 137 Assume that if only [, or 1, has excessive traffic, the capacity of Iy
pe exceeded with probability of 155

giv

: m?{w;—cf@rc P(IS{ L) = P([Sl L L) = 015, Furthermore, it is obvious that I

e jil have excessive traffic when 7, and I, both have excessive traffic. Then, in this
W

B p(1) = PU| WP + P, | RIYPALE) + PUs | LIPULL)
P(iy | BI)PCLE)
= 1.00(0.10) + 0.15(0.10) + 0.15(0) + 0(0.80)
= {L.11§
EXAMPLE 2.25

Suppose that in any given year, the probability of damaging storms (that is,
torms with wind speed exceeding say 60 mph) in the county of Champaign is 0.20.
Si)uring such a storm, if not accompanied by tornadoes, the probability of structural
failures in the city of Urbana (which is in Champaign County) is 0.10,
When a storm oceurs in the county, the probability that it will be accompanied by
a tornado is 0,25, and the probability that this tornado will it the city of Urbana
is 0.05. Assume that tornadoes occur only during a storm, and when the city is hit
py 2 tornado it is certain to cause structural failures, whereas the probability of
siructural failures in the city when a tornado occurs in the county but does not hit
the city is 0.10.
Caleulate the probability of structural faifures in the City of Urbana in a period
of one year.
Define the following events:
F == failure of structures in city of Urbanpa
S = storm in Champaign County
T == tornado in Champaign County
H = tornado hitting city of Urbana
Clearly, the events ST, §7, §7, and §7 are mutually exclusive and collectively
exhaustive; hence the probability of structural failures in the city is
P(F) = P(F| STIP(ST) + P(F| ST)P(ST) + P(F| ST)P(ST)
+ P(F| STP(ST)

where
P(F| ST) = P(F| STH)P(H| ST) + P(F| STH)PH| ST)
= 1.00(0.05) + 0,10(0.55) == 0,145
P(FLSTY =010
P(F'i ST} = unknown; not needed in this problem

P(F|8Ty =0
Also
P(ST) = P(T| $)P(S) = 0.25(0.20) = 0.05
PSTY = P(T| $IP(S) = 0.75(0.20) = 0.15
PST) =0
P(ST) = 0.80
Therefore

P(F} = 0,145(0.05) + 0.10¢0.15) + (M)(0) 4 0(0.80)
= {.00725 + 0.015 == 0.0222
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2.3.4. Bayes’ theorem

In the situation underlying the total probability theorem (see Seet]

2.3.3), if the event A occurred, what is the probability that a particylpy

also oceurred? This may be considered as g “reverse” probability.
Applying Eq. 2.14 to the joint event AE., we have

PA[E)P(E) = P(E:| A)P(4)
Therefore we obtain the desired probability

PA|EHP(E)

P{E:|4) = Bl4)

which is known as Bayes' theorem. If P(A) is expanded using the totg)
probability theorem, Eq. 2.20 becomes

P(E:|4) =
2 P(A|E)P (&)

jel

EXAMPLE 2.26

Referring again to the pavement
is the probability that if a section
basis of the ultrasonics test?”

This means P(A4 l @), which according to Eq. 2.20, is given by
P(G | A\P(A)
P(G)

is well constructed, it will be accepted on th

P(A]G) =
From Example 2.19, we have

PG[A) =080 and P(4) =050

To determine P(G), we observe that A and A are mutually exclusive and collectively

exhaustive; hence, according to Eq. 2.19,

P(G) = P(G | AYP(A) + P(G | e
= 0.80(0.90) + (0.20)(0.10)

= 0.74
Therefore the required probability is

0.80(0.90)
PUA|G) = == = 0973
whereas
P(A|G) =1 —0973 = 0.027

which is the probability that a well-constructed section may be rejected on the basis | 5

(220,

P(A | B P(B)) @200 |

problem of Example 2.19, we might ask, “Whay
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-agonics lest. These latter probabilities should be compared and contrasted

of the wltr Ay and P(G i Ay of Example 2.19; the diflerence in meaning is not trivial.

with PG
: _EXAMPLE 2.27

air pollulion in a city is caused mainly by industrial and automobile ex-

' Thte In the next 5 years, the chances of successfully contro}hng these two sources
s ?I.ution are, respectively, 7597 and 6097, Assume t‘hat' iff only one gf the two
of 4-235‘ is successfully controlled, the probability of bringing the polution below

TLes b o
Soucjmhic levei would be 8007, ) ) i .
aci i) what is the probability of successfully controlling air pollution in the nex

a at i

ar ‘? M M - 1+, 0
Sy(li;;;sli‘ in the next 5 years, the pollution level is not sufticiently comm]led,_ wh_at
« the p;'obabiiiiy that it is entirely caused by the failure to control auiomobile
is : -

ust? R e , . .
cxgiguming statistical independence between controlling industrial (I) and auto

ile (/ chausts, we have
mobile (A) ¢x PCAD = 075 % 0.60 = 0.45

P(AT) = 0.25 % 0.60 = 0.15
PCAD =075 % 0.40 = 0.30
P{AT) = 0.25 x 0.40 = 0.10

Then, deneting £ as the event of controlling air pollution,

(a) P(E) = 1.00{045) + 0.80(0.15) + 0.80(0.30) + 0(0.10)
= (.81
PUE| AN PLAT) 020 x 0.30
P 019

by P(AIE) =
= (.32

(ion: ion is zontr vhat is the probability
A related question: If pollution is not LOI‘IUOH(.‘d,' W probabilit
lhzglc')conlrol of auqtomobilc exhaust was not successiul? This calls for P(A l ED; bat
P(A| Ey = P(AL w AT| E)
= P(AT| E) + P(AT| E)
P(FJ| /TI_)P(A"],) N P(E[ ANPAT)

PO P(E)
0.20(0,30)  1.00(0.10)
=009 0.19
e 0).84
whereas " B st m PUELINDPUAY  PE| IDPTA)
PUA|E) = PUJA WIA| E) = P T
__0.20(0.15) + 1.00(0.10) _ 013 0.68
o 0.19 0.19

. EXAMPLE 228

Aggrepates for construction are ordered from two different companies. Company
Adelivers 600 loads each day, out of which 3% do not satisfy the specified quality.
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Company 8 supplics 400 loads each day, out of which only 197 are subst

company 47

(b) What is the probability that a load of ageregate picked at random wi]| Nog i

pass the specified standard?
(¢y If a load of aggregaie was found (o be substandard, what is the prob
that it came from company A4?

Solutions:
{a) Since there are altogether 1000 loads, out of which 600 came from comp

-, the probability that a foad picked at random comes from company A is
600
PA) = —" =06
) T

(&) The substandard aggregale may come from either company 4 or company g,
We may apply the theorem of (otal probabitity to compute the probability of (e 2

event £, that is, picking a load of substandard aggregate:

PUE) = P(E| 4yP(4) + PE| B)P(B)

600 400

= (L0183 4 0.004 = 0,022

(¢} if the load of aggregate picked at random s substandard, (he pmbubi]i[y

that it comes from company A is no longer 0.6 as in (a), because the sample space ¢
is changed. Instead of 1000 loads, the new sample space consists of only substandarg

aggregate loads which is
(0.03 % 600 + 0.01 x 400) = 18 + 4 =22 foads

out of which only 18 are from company 4. Hence

. 0.03 x 600
P 1he agpregate is s NE [; d) om= - e
(/II e aggregate is substandard) 0.03 % 600 + 0.01 %360
18
=._ =0
P 818

Since the aggregate of company A is of poorer quality than that of 8, the additional
information that a load of aggregate is substandard increases the probability that
such a load comes from A,

Bayes' theorem is useful for revising or updating the ealeulated proba-
bility as more datsn and Information beeome available, The following
exampies will serve to illugtrate this, including how prior information
(whiel may he based on Judgmentad assumptions) s eombined with fest
results Lo update the ealeulated probability,

EXAMPLE 2.29

Consider a pile foundation, in which pile groups are used to support the individual
column {oo{ings. Each of the pile group s designed to support a load of 200 tons.

andyrg .
(&} What is the probability that a load of aggregate picked at random came ﬁ'()ln. i

abilily

any
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- pormal condition, this is quile safe.. Howcx_fcr, on rare occ§31onsﬂtlc1:e)]r(:;:ﬁ
Unde-{vlch as high as 300 tons. The foundation engineer wished to l]‘OW he |
”a.y-‘] L‘cthat a pile group can carry this extreme load of up to 300 tons. § i
abgl yed on previous experience with similar pile foundattt)ogi,.t.‘;up[f)lgl!;gn:gmwaiﬂy

- il tests i timated a probability of 0.

-ounts and soil tests, the engineer esti abil 0 th ‘
b];)w :(;)lli]) can support a 300-ton load. Also, among those that have capacity less

ile

P tons, 509 failed at loads less than 280 tons. ' _ .
ih?;“rl)gi?gpr(()we,mc estimated probability, the foundation cng;nee{rhce)rs(;l)cerceiicc:in;l%zl)c;
i S es
be proof-toaded to 280 tons. If the p.lle Zroup surviv roof
i rfé]pt;i pm[i)ability of the pile group supporting a load of 300 tons can be update
0ac,
as foltows.

Let A = event that the capacity of pile group > 300 tons

T = event of a successful proof load.
. . e . = 0.70;
sen according te the information given above, P_(Y | Ay = 0.5, and P(A) = 0
:n}d clearly P{Tl Ay = 1.0. Bayes’ theorem then gives
‘ mﬂAwm)_ ;
PA|T) TP AP + P(T| DPA)
_ (1.00)(0.70) — 0.824
T 100(0.70) + 0.5(0.3)
Therefore, if the proof test is successful, the required probability is increased from
0.7 10 (L824,

EXAMPLE 2.30

3 o I G 1"
Aggregates for a highway pavement are extracted 1‘"roml d{ gt;dvel pt::bﬁ:ﬁig *3-3
i fial fr is area, it is wa that the probs @
expericnce with the material from this area, it is kno p

P (good-quality apgregate) = 0.70
P (poor-quality aggregate) = 0.30

PG
PG
In order to improve this prior information, 11;@ ciuginﬁeiltestfld a;;fjg;%li(]:i((;fﬂtj;?
) N - . S }c
regate. However, the test method is not per ectly reliable ' y th
?1%;‘;(;:}%2{1)/ good-quality aggregate will pass the test is 80 %, whereas, the probability
i > test is 109,
{1 poor-quality aggregate passing the test is A - .
° Leli T, élenoteytiﬁ:&event that a sample passes the test, Then, if a sample does
indeed pzéss the lest, the updated probability is
. P(Ty | GYP(G) )
PG| T = PUT, | GIP(G) + PUT; | GIP(E)
- (0.8)0.7) = 0.95
(0.810.7) + (0.1)(0.3}
Therefore, with a positive lest result, the probabitity of good-quality aggregate is
increased significantly-—from 70% to 95_“/(,. o } o ' '
l L‘,:;?)c(;sc gml the c%wgincer is not satisfied with just one bdmpln 1ef:l, iml;j‘ ;l}i:ll1ﬁl
sample is tested. If this additional sample also passes the (est, the probabitity
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updated further as foliows:
P, | GOIPE) + P(T, [ OPG)
_ {0.8)(0.95)
(0.8)(0.95) + (0.13(0.03)

= 0.993

,Tl . “ . . .
s updating is performed Sequentiaily. The updating may also be performed j, , i‘
I 4

sin 51
gle step using the two test results together. In this latter case, we have

P(T\ T3 | G)P(G)
PLT, [GPG) + PTST, | GIPE)
_ £0.8)(0.8)(0.7)
(0.8)(0.8)0.7) + (0.1)(0.1y0.35 ~ 9993

PG| TiTy) =

which is clear [ H g 5 j |
ch is C]Cdlly the same as the result obtained sequen!‘ia][y above, as it ShOLI]d b -
3 s €, L

2.4. CONCLUDING REMARKS

In this chapter, we loar : ilisti
pter, we learn that a probabilistic problem invelves the dotep. ¢

HNAEION Of her roodee 11ee o
mation of the probability of an event within an exhaustive sof of

and solution of such problems: (1) the definition of the possibility ap

X

tion e prohability of : :
o i)i {h;, probability of the event, The relevant mathematical hages
selt " 1109 " 1 e b ) © AN Lic, seg =
for these purposes are the theory of sets and the theory of probability, i

In this chapter
" mns (.lmpli,(.l, the basic elements of both theories are developed in o
ntary and nonabstract terms, and are Ulustrated with physical pmhlmﬁﬂ;

I) {1 d 1 {1] nt H i : H .I
(111 n i o -(\}\l {,1 ":(“f-"!' cven N ]} LR 1Y b[] & i 0 11 ¢
| Dy CNts ¢ { om 10 L Ubt 1 11 or :.: :
events Vi l!l‘ (J])( Idil()lidl 1 lll(‘S (]i ‘5(‘{5 !l‘lld B u[)h(,’-('ﬁ ) 3 ‘!1(41“ Y 3 Lh(‘o‘(, Con-

sist of tha wundo ‘ntersects
the wunion and mlersection of two or more events including their

complemaoents. Similarly, the or (i :
oo ‘}])(11( mttlnts}. Similarly, the operational rules of the theory of probability &
1¢ bases for the deductive relationships among probabilitics of

different ovents within a g ibili
et (;T ;r(.,nt.s \i]thl}n a given possibility space; specif ally, these consist
Padariion rule, the multiplication r ) robabil
: P mutkiplicatron rule, the theorem T 16Y7
and Bayes' theoren. , o of {olal probabity,
In essence oneepts i i
m(lnt(lssc,rzu,, Lil-e. d(,onmpt.s developed in this chaptor constitute the funda
ntals ol applied probability, In Chapters © ! 1 analytical
: ¢ V. Aapters 3 and 4, additional : i
e : donal analytical
tools will be developed based on those fundamental coneepts l

PROBLEMS
Sections 2.1 & 2.2

2.1 The possible sett] ) ee s i i
i d[: pible ¢ ements for the three supports of a bridge shown ir Fig, P2.1
support A—Qin., Iin., 2 in.
support 8—0in,, 2 in.

support C—-0in., 1 in., 2 in,

b] t G5 ({)I JO8 i 1 5 space E W f]}lll s AT p AraIm L1t il i( ' ].I "
h HE. OSSID lll & i
I p l’) . g are pi (Jllll[ ¢ lormu Li..t!{)[[

. he i Hieat: _ Sy ace i
and the identification of the eyent within this space: and (2) the (‘V‘LIL .
-2 : 23 LU BT Q-

i

rigure P21

2.2

2.3

24

25

01

| PR

PROBLEMS of

Posslbla Trovel Thnes

Bridge

Figure P2.2

(a) fdentify the sample space representing all possible settlements of the
three supports; for example (1,0, 2) means A4 settles 1in., B settles
0 in,, and C settles 2 in.

(by If E is the event of 2 in. differential settlement between any adjacent
supports of the bridge, determine the sample points of £.

Figure P2.2 shows a network of highways connecting the cities 1,2,...,9,

(a) Identify the sample space representing all possible routes between
cities 1 and 9.

{b) The possible travel times between any two connecting nodes are as
indicated in Fig, P2.2 (for example, from 2 1o 9, the possible travel
times are 3, 4, 5 hr). What are the possible travel times between { and 9
through route () — @ — @? How about through route (I} -+ @ -
© @& QO

A 6 m x 48 m apartment building may be divided into I-, 2-, or 3-bedroom
units, or combinations thereof (Fig. P2.3}. If I-bedroom units are each
6m x 6 m, 2-bedroom units are each 6 m x 12 m, and 3-bedroom units are
cach 6 m x 16 m, how may the apartment building be subdivided into one or
meore types of units?

A left-turn pocket of length 60 ft is planned at a sireel intersection. Assume

that only two types of vehicles will be using it; a type-A vehicle will occupy

15 ft of the packet, whereas a type-B vehicle will occupy 30 L.

(a) Identify all the possible combinations of types A and B vehicles waiting
for left turns from the pocket.

{b) Group these possibilities into events of 1, 2, 3, and 4 vehicles waiting
for left turns.

Strong wind ata particular site may come from any direction between due east

(0 = 07 and due north (# = 90°), All values of wind speed ¥ are possible.

(&) Sketch the sample space for wind speed and direction.
(b} Let A = {V > 20mph}

B ={12mph <V <30 mph}

C = {0 £ 30°}

48 m

Figure P2.3
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identify the events 4, B, ¢
part {a).
(¢} Use new sketehes to identify the following evenis:

cand A4 in the sample space sketched in

D=A4n¢C
E=4d4 0B
FeadnBnC

(d) Are the events D and £ mutyal
and C?

2.6 'E.hfa possible values of the water height M, relative to mean water level, 4
cach of the two rivers 4 and B are as follows (in meters): T

fy exclusive? How about everts 4

Ho= =3, -2 -1,0,1,2,3,6
(a) Consider river A4 and define the following events:

Ay =H{H; >0} Ay ={H,; =0}, Ay={H, <0}

List all pairs of mutually exclusive X y :
o each[rive]-, Ly y ¢ events among A, 4, and A,
_Norma] water, N = {1 g if < 1}
Drought, D = {H < 1}
Flood, F = {1 > 1}
Use the ordered. pair (i, i) to identify sample points refating to joint
water levels in A4 and B, respectively; thus (3, —1) defines the condition

h = 3 an l JIT g = = 1NEQ I Al IC OIS
1 C I I{)l[“{l]lci Qus clerm “
b . D Il (v W samp
by . y l ]0 ts Ton 11]0

(i) Ny Ny iy (F, v Dy N,

2.7 The sequence of main activities in the construction of (wo structures i
shown in Fig, P2.7. The construction of the superstructures A4 and B }:'1;‘1
start as soonr as their common foundation has been completed. (

. The possible times of cémpletion for each phase of construction are
;r:i:;ﬁsd n Fig. P2.7; for example, the foundation phase may take 5 or 7
{a) List the possible combinations of times for each Phase of the project;
fpl' example, (5, 3, 6} denotes the event Lhat it takes 5 months for I"uunda:
tion, 3 months for supersiructure 4, and 6 months for superstructure B8

()] Wlieil are the possible roral completion times for structure A af(me';
Far structure B alone? ' o

_~Cylindrical
" Tank

Foundotion

Stort
(5,7)

Y Fuwsh

Figure P27 Figure P2.8
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{¢) What are the possible rofa! completion times for the project?
(d) 1f the possibilities in part (a) are equally likety, what is the probability
that the complete project will be finished within 10 months?

28 A cylindrical tank is used to store water for a town (Fig. P2.8). The available
supply is not completely predictable, In any one day, the inflow is equally
likely to ill 6, 7, or 8 ft of the tank. The demand for waler is also variable,
and may (with equal likelihood) require an amount equivalent to 5, 6, or 7 ft
of water in the tank.

(a) What are the possible combinations of inflow and outflow in a day?

{(b) Assuming that the water Jevel in the tank is 7 ft at the start of a day,
what are the possible water fevels in the tank at the end of the day?
What is the probability that there witl be at least 9 ft of water remaining
in the tank at the end of the day?

Gection 2.3

2.9 A power plant has (wo generating units, numbered 1 and 2. Because of
maintenance and occasional machine malfunctions, the probabilities that,
in a given week, units No. 1 and 2 will be out of service (these two events are
denoted by E; and E,) are 0.01 and 0.02, respectively.

Turing a summer week there is a probability of 0.10 that the weather will
be extremely hot (say average temperature > 85°F; this event is denoted
by 350 that demand for power for air-conditioning will increase consider-
ably. The performance of the power plant in terms of its potential ability
to meet the demand in a given week can be classified as

(i) satisfactory S, il bork units are functioning and the average tem-

perature is below 857F
if one of the units is oul of service and the average
temperature is above 85°F
(i) unsatisfactory U, otherwise.
Assume H, Ey, and E, are statistically independent,
(a) Define the events S, M, and U/ in terms of M, £, and E,.
(b} What is the probability that exacrly one anit will be out of service in
any given week?
(c) Find P(S), P(M), and P(LS).

210 A cantilever beam has 2 hooks where weights () and () may be hung (Fig,
P2.103). There can be as many as two weights or no weight at each hook, In
order to design this beam, the engineer needs to know the fixed-end moment
al A, that is, M.

() What are all the possible vaiues of M 7
(h) Let

(i) marginal M

E, denote the event that M ; > 600 ft-Ib
£y denote the event that 200 < A, < 800 fi-lb
Are events £ and £, mutually exclusive? Why?
(¢) Are events £y and E, mutuaily exclusive? Where E, = {0, 100, 400},
(d) With the following information:
Probability that weight (I} hangs at B = 0.2
Probability that weight () hangs at ¢ = 0.7
Probability that weight () hangs at 8 = 0.3
Prababitity that weight (2} hangs at C = 0.5
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Whal are the probabilities associated with each sample point in part (a)
Assume that the location of weight (1) does not affect the pmbabilily
of the location of weight (3),

{e) Determine the probabilities of the following events:

En By, By M Ey, By VE,E,

21! Ina building construction project, the completion of the building requires
the successive completion of a series of activities. Define

E = excavation completed on time; and P(E) = 0.8
F = foundation completed on time; and P(F) =07
S = superstructure completed on time; and P(S) = 0.9

Assume statistical independence among these events,

{a) Define the event {projecl completed on time} in ferms of E, F, and 5.
Compute the probability of on-time completion.

(b) Define, in terms of E, F, 8 and their complements, the fol]owing event:
G = excavation will be on time and at least one of the other two

operations will not be on time

Calculate P(G).

(c) Define the event
H = only one of the three operations will be on time

232 The waste from an jndustrial plant is subjected to treatment before it is
ejected Lo a nearby stream. The treatment process consists of three stages,
namely: primary, secondary, and tertiary treatments (Fig. P2.12). The
primary treatment may be rated as good (G)), incomplete (1) or failure ().
The secondary treatment may be rated as good (Gy) or failure (#3), and the
tertiary treatment may aiso be rated as good (Gy) or failure (F3). Assume
that the ratings in each treatment are equally likely (for example, the primary
treaiment will be equally likely (o be good or incomplete or failure). Further-
more, the performances of the three stages of treatment are slatislicaily inde-
pendent of one another.

(a) What are the possible combined ratings of the three treaiment stages?
{for example, Gy, F, Gy denotes a combination where there is a good
primary and tertiary, but a failure in the secondary treatment). What is
the probabitity of each of these combinations {or sample points)?

{b) Suppose the event of satisfactory overall treatment requires at least
two stages of pood treatment, What is the probability of this event?

(c) Suppose:

£ = good primary treatment
Ey = pood secondary treatment
£y = good tertiary treatment

PROBLEMS 05
Determine B ] i o
PED,  PUEVE),  P(EE,)

{d) Express in terms of £y, £, Eythe event of satisfactory overall treatment
as defined in part (b). (Hint. E £, Is part of this event.)

Waste

:

(| Primary
(6,1, F) |

.

Secondary
(G,F) i

Treatment

N

Ter?iur;‘u
(G,F)

Stream

-

Figure P212

Figure P2.13

213 The cross-sections of the rivers at A, B, and C are shown in Fig. P2.13 and
the flood ievels at A4 and B, above mean flow level, are as follows:

Flood level at A

N Probability
0 0.25
2 0.25
4 0.25
6 .25
Fiood level at B _

(1) Probability
0 0.20
2 0,20
4 0.20
6 0.20
8 0.20

Assume that the flow velocities at 4, B, and ¢ are the same. What is ills
probability that the flood at € will be higher than 6 ft above the mean levet?
Assume statistical independence between flood levels at 4 and B, Ans, 0.3,

214 Figure P2.14 is a plot of test resulis showing ihe degree of subgrade compac-
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Figure P2.14 Figure P2.15

tion C versus the life of pavement L. Determine the ToHowing:
@) PO < L £40| C = 70)

(b} P(L > 40| C < 95)

(©) P(L > 40170 < C < 95)

(d) P(L > 30and C < 70)

2.15 ;l"hc highway system be[wecn cities 4 and B is shown in Fig, P2.15. Travel
hetween A and B during the winter months is not always possible becayse
301‘11(: pfnls ()f .lhe hlghway may not be open to {raffic, because of extreme
weather condition. Lel £, E,, Ey denote the events that highway 4B, AC
and CB are apen, respectively, ! ’

On any given day, assume

P(Ey) = 2/5
P(Ez) = 3f4
P(E) = 2/3

(a) What is the probability that a traveler will be able to make a trip from
A to Bif he has to pass through city C?  Ans. 0.6.
((b; wlhgll is the probablity that he will be able to get to city B?  Awus, 0.7
¢ hich route s 'y first in order imi s
gotting tol_jBf; should he try first in order to maximize his chance of
2.16 A contractor is submitting bi j
contra k g bids to two jobs A4 and B, The probability that he
will win J()b.A is P(A)_ = L and that for job Bis P(B) = §p Y )
(a) As?un_amg that winning job 4 and winning job Bare i'ndepcndcn( evenls
) \\A;:/f;dltn? th;e probability that the contractor will get at least a job? ’
1at is the probabitity that the contractor j i as won ¢
least one ot ¥ got job A if he has won at
(c} })fge is also submi}ting a bid for job ¢ with probability of winning it
( ) = 1/4, what is .lhe probability that he will get at least one job?
Agam assume statistical independence among A, B, and C. What is
the probability that the contractor will not get any job af all?

2.17 Cities I and 2 are connected by route 4, and route B connects cities 2 and 3

P(Ey| Ey) = 4fs
POE, | ByEg) == 12

PROBLEMS 07

A

Figure P2.17

(Fig. P2.17). Denote the eastbound fanes as 4; and By, and the westbound
lanes as A, and By, respectively,

Suppose that the probability is 90%; that a lane in route A wili not require
major repair work for at least 2 years; the corresponding probability for a
Jane in route 8 is only 80 %,

(a) Determine the probability that route A will require major repair work
i the next two years. Do the same for route B.

Assume that if one lane of a route needs repair, the chances that the
other lane will also need repair is 3 times its original probability.
Ans. 0.17; (.28,

(b} Assuming that the need for repair works in routes A and B are inde-~

pendent of each other, what is the probability that the road between
cities 1 and 3 will require major repair in two years? Ans. 0.40.

218 The water supply system for a cily consists of a storage tank and a pipe line
supplying water from a reservoir some distance away (Fig. P2.18). The
amount of water available from the reservoir is variable depending on the
precipitation in the watershed (among other things). Consequently, the
amount of water stored in the tank would be also variable. The consumption

of waler also fluctuates considerably.
To simplify the problem, denote
A = available water supply {from the reservoir is low
B = water stored in the tank is low
C = level of consumption is low

and assume that
P(A) = 20%,
P(B) = 15%
P(CY = 50,

The reservoir supply is regulated (o a certain extent to meet the demand, so

Figure P2.18
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that
P(A ] ) == P(reservoir supply is high ] consumption is high)
== 759

3 s -
Also, P(B { A) = 50%, whereas the amount of waler stored is independen of :

the demand.

‘ Supposg that a water shortage will cccur when there is high demang (

Lonsuxp;)tmn} for water but either the reservoir supply is low or the wm.or o

water is low. What is then the probabitity of a water s'hortage" Assume the{: a
7 As at -

P(AB| C) = 0.5 P(AB).
2.19 The time T (in minutes) that it takes to load crushed rocks from a quary

onto a truck varies considerably. From a record of 48 toadings, the followiné

were observed,

Loading time T

{minutes) No. of observations
] 0
2 5
3 12
4 IS
5 10
6 6
>6 0

Total = 48

(a) Sketch the histogram for the above data.

(b} Based on these data, what is the probabili : i i
t se data, probability that the loading ¢ y
for a truck will be at least 4 minutes? g me e T

(c) What is the probability that the total time for foading 2 consecutive
trucks will be less than 6 minutes? Assume the Joading times for any
two trucks {o be statistically independent.

(d} Tn order to make_a conservative estimate of the loading time, it i
assumcd' that ioadmg a truck witl require at least 3 minutes: on this
assumption, what will be the probability that the foading time for a
truck will be less than 4 minutes?

2.20 A gravity retaining wall may fail either by slidi i
a f sliding (A) or overtur y
both (Fig. P2.20). Assume: d g urning (#) or
(i) Probability of failure by sliding is twice as likely as i
& b R o’ l[ at l “tar N
Y hat s P = 30 g y hat by overturning;

(i1} Probability that the wall also fails by sliding, given that it has failed by

~_overturning, P(A4 | BY =08

(i) Probability of failure of wal] = 109

((§§ I?etermine the probability that sliding witl occur.  Ans. 0.0009]

If the wall fails, what is the probability that ealy sli ling I:  occurred?

Hoshe wall I ¥ fy sliding has occurred?

221 Two cables are used to lift & foad W (Fig. P2.21), However, normally only
cable 4 will be carrying the load; cable 8 is slightly longer than A4, so nor-
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Gverturniﬁg/—-

G 7 =
! - W

Rock Figure P2.21

mally it does not participate in carrying the load. But if cable A breaks,
then B will have to carry the full load, until 4 is replaced.
The probability that A4 will break is 0.02; also, the probability that B
will fail if it has to carry the load by itself is 0,30,
(a) What is the probability that both cables will fail?
{b) If the load remains lifted, what is the probability that none of the cables
have failed?

2,22 The preliminary design of a bridge spanning a river consists of four girders
and three piers as shown in Fig. P2.22. From consideration of the loading and
resisting capacities of each structural element the failure probability for each
girder is 107 and each pier is 107% Assume that failures of the girders and
piers are statistically independent. Determine:

(a} The probability of failure in the girder(s),
(b} The probability of failure in the pier(s).
{c) The probability of failure of the bridge system.

&

Figure P2.22

223 The town shown in Fig, P2.23 is protected from floods by a reservoir dam
that is designed for a 50-year flood; that is, the probability that the reservoir
will overflow in & year is 1/50 or 0.02. The town and reservoir are located in an
active seismic region; annually, the probability of occurrence of & destructive
earthquake is 5%. During such an earthquake, it is 20 probable that the
dam will be damaged, thus causing the reservoir water to flood the town,
Assume that the occurrences of natural floods and earthquakes are statis-
tically independent.

(a) What is the probability of an earthquate-induced flood in a year?
(b) What is the probability that the town is free from flooding in any one
ear?
() }’f the occurrence of an carthquake is assumed in a given year, what is
the probability that the town will be flooded that year?
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/—Darn
Reaservoir

Figure P2.23

2.24 From: ) ater-pi i 1
o )Or}l?is:u\i;:y E)f ]OOUIWdICI-pIPC systems in the United Stalcs, 150f them
i Cd 10 be contaminaied by bacteria alone whereas § are reported to |~i e
: laye

an excessi C cad concentrati
e ssive level of lead concentration and amony these 5, there are 2
are lound 1o contain bacteria also , e

a at is the probabili ¢ { i
(2) What is the probability that a pipe system selected at random wil] i

contain bacteria?  Any. 0.017.

b p 1¢ i - gl 3 :
(b) What is the probability that a pipe system selected at random js con. ..

taminated?  Ans. 0.02

C - T . . N o 1 . . |
() Suppose that a pipe system is found (o contain bacteria. What i the f -
. R [

probability that its lead concentration is also excessive?  Any 2117

d) Ass : C prese i ili g
{d Pu:‘u?l})(i jll]::t(yltf1L[J')1fESCE]t probability of contaminatjon as computed iy [
$ salislactory, and it is proposed that it g
0.01. Suppose that it & dif; propos at 1 should not exceeq 7

8 e the i diflicult (o control the Jead ¢ inati :
0 Buppose th cult ad contamination chL
;?]i.)su}])j}s?nblc lto reduce the likelihood of bacteria contamination W}:L:t[ S
s dobe the permissible probability of bacteri tamination) -
ould be missibl HLY b Dacteria contamination) 5
ssume that the value of the conditional probability compu;cd li]:; e E

part (¢} stiil applies.  Ans. 0.00567.
225 The structural component shown in Fig, P2.25 has welds (o be inspected fo
§ spected for

ﬂ;i(\:;.s‘..il--:]-c)gn experience, the likelihood of dclecting flaws in a foot of weild
provided by the manufacturer ig 0.1; and the probability of delccting flaws £ 1

na weld of length 1, ft is given by
PUFY=01L for 0<1I <21t

In pener: e quality be i )
general, the quality between sections of welds in a structural component js

[~ /// ]
/ C= 100 gfm f €300 C’m/
/ I; ! “L_._ E——
- . ‘;'? \ \\
e [ _ -
Ay Ay ’ s_é: B \ —— / %
& (5.
Weldszd.._.,,_w v‘

¥ Arga Ny e

Ot Branch Pipes e Elgvoriog,

Figure P2.25 i
gure P2.25 Figure P2.26

thay & -
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correlated. Assume the following:
() If flaws are detected in section A, the probability of flaws being detected

in A, will be three times its original probability.
(i) If flaws are detected in section A4, the probability of detecting flaws in
section B will be doubled.
Let Fy,, F4,0 Fq, and Fy be the events of flaws detected in weld sections
Ay, Ay, A, and B, respectively.
(1) What is the probability of detecting flaws in 4?7 Aas, 0.28.
(b) What is the probability of detecting flaws in the structural component?
Ans. 0.324.
(¢) If flaws are detected in the structural component, what is the probability
that they are found only in A7 Ans. 0.692.

The storm drainage in a residential subdivision can be divided into watershed
areas NV, and N, as shown in Fig. P2.26. The drainage system consists of the
main sewers with capacities C; = 100 ¢fm (cubic feet per minute) and C, =
300 ofm, respectively. The amounts of drainage from N, and N, are variable,
depending on the rainfall intensities in the subdivision (assume that whenever
it rains the entire subdivision is covered); in any given year, the maximum
flow, I) and I,, and their corresponding probabilities are as follows,

It {cfm) Probahility 13 (efim) Probability
80 0.60 100 0.50
120 0.40 210 0.30
250 0.20

i :_ 221

Meglect the possibility of flooding in N; caused by the overflow of pipe

o
(a) What is the probability of flooding in area N;? Flooding occurs only
when the drainage exceeds the capacity of the main sewer,
(b) What is the probability of fioeding in area N,?
(c) What is the probability of flooding in the subdivision?
In order to study the parking problem of a college campus, an average worker
in office building D, say Mr. X, is selected and his chance of getting a parking
space each day is studied. {Assume that Mr. X will check the parking lots
A, B, Cin that sequence and will park his car as soon as a space is found.)
Assume that there are only three parking lots available, of which 4 and B
are free, whereas C is metered (Fig. P2.27). No other parking facilities (say
street parking} are allowed. From statistical data, the probabilities of getting
a parking space each week day morning in lots 4, B, C are 0.2, 0.1, 0.5,
respectively. However, if lot A is full, the probability that Mr. X wili find a
space in B is only 0.04. Also, if lots A and B are full, Mr. X will only have a
probability of 40 %7 of getting a parking space in C. Determine the following:
(&) The probability that Mr. X will not be able to secure a free space on a
weekday morning.  Ans, 0.768.
(b) The probability that Mr. X will be able to park his car on a weekday
morning.  Ans. 0.539.
{c} If Mr. X has successfully parked his car one morning, what is the proba-
bitity that it wilt be free of charge? Ans. 0.43,
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2.28 Pollution is becoming a problem in cities I and II. City I js affected by botp

2.29
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Cffice Bidg, D

Figure P2.27

air and water poltution, whereas city 11 is subjected 10 air pollution only
/{s three-year plan has been put into action to control these sources of po{lu..
tion in both cities. It is estimated that the air pollution in city 1 will be success.
fulty controlled is 4 times as likely as that in city H. However, if air pollulio‘n
in city il is controfled, then air pollution in city L will be controlled with 904/
probability. . ’

The control of water pollution in city T may be assumed to be independent
of the control of air pollution in both cities, In city 1, the probability that
pollution will be completely cantrolled (that is, both sources are controlled)
s 0.32, whereas it is also estimated (hat water pollution is only half as likely
{o be controlled as the air pollution in that city. Let

A) be the event “air pollution in city Iis controlied™
A1 be the event “air pollution in city I1 is controlled”’

Wy be the event “water pollution in city I is controlled”

Determine:

(1) Probability that air pollution will be controlled in both cities. Ans, 0.8,

(b) Probability that poliution in both cities will be completely controlled,

Ans, 0.072,

() Probability that at least one city will be free of potlution.  Ans. 0,448,
A form of transportation is to be provided between two cities that are 200
miles apart., The alternatives are highway (H), railway (R), or air transport

| 200 miles

A

Figure P2.29

1.30
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(A}; the last one meaning the construction of airports in both cities. (See
Fig. P2.29.) Because of the relative merits and costs, the odds that a Com-
mittee of Planners will decide on R, H, or 4 are 1 to 2 to 3. Only one of these
three means can be constructed.

However, if the committee decides on building a railrcad (R), the prob-
ability that it will be completed in one year is 50 %; if it decides on a highway
(H), the corresponding probability is 75%;; and if it decides on air travel,
there is a probability of 809 that the airports will be completed in one year.

(a) What is the probability that the two cities will have a means of trans-
portation in one year?

(b) If some transportatien facility between the two cities is completed in
one year, what is the probability that it will be air transport (4)?

(c) If the committee decides in favor of land facilities, what is the probability
that the final decision will be for a highway (H)?

“Liquefaction of sand” denotes a phenomenon in foundation engineering,
in which a mass of saturated sand suddenly loses its bearing capacity because of
rapid changes m loading conditions-—for example, resulting from earthquake
vibrations, When this happens, disastrous effects on structures built on the
site may follow.
For simplicity, rate earthquake intensities into low (L), medium (M},
and high (H). The likelihoods of liquefaction associated with earthquakes
of these intensities are, respectively, 0.05, 0.20, and 0.90.
Assume that the relative frequencies of occurrence of earthquakes of these
intensities are, respectively, 1, 0.1, and 0.0l per year.
(a) What is the probability that the next earthquake is of low intensity?
Ans. 0.9.

(b} What is the probability of liquefaction of sand at the site during the
next earthquake? Ans. 0.07.

(¢} What is the probability that the sand will survive the next three earth-
quakes (that is, no liquefaction)? Assume the conditions between
carthquakes are statistically independent.  Ans. 0.80.

There are three modes ol transporting material from New York to Florida,
namely, by land, sea, or air. Also land transportation may be by rail or
highway. About half of the materials are transported by land, 302, by sea,
and the rest by air,

Also, 407 of all land transportation is by highway and the rest by rail
shipments. The percentages of damaged cargo are, respectively, 10% by
highway, 597 by rail, 6%, by sea, and 2% by air.

(a) What percentage of all cargoes may be expected to be damaged?

(b} If a damaged cargo is received, what is the probability that it was

shipped by land? By sea? By air?

The amount of stored water in a reservoir (Fig, P2.324) may be idealized into
three states: full (7), half-full (H), and empty (E). Because of the probabilistic
nature of the inflowing water into the reservoir, as weil as the outflow from
the reservoir to meet uncertain demand for water, the amount of water
stored may shift from one state to another during each season. Suppose that
these transitional probabilities from one state to another are as indicated in
Fig. P2.32b. For example, in the beginning of a season, if the waler storage
is empty, the probability that it will become half-full at the end of the season
is 0.5 and the probabitity that it will remain empty is 0.4, and so on. Assume
that the water level is full at the start of the season,
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Figure P2.324
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Figure 2,320

(a) What 1: the pr(_)babilily that the reservoir witl be full at the oend of g
season? What is the probability that the reservoir will contain w-um
at the end of one season?  Ans 0.2:0.09, we

(b} What is the probability that the reservoir will be full at the end of the .

second season?  Ans, 0.13,

(¢} What is the probability that the reservoir will contain water at the end of 3

the second season?  Aas, 0.73,

AI a quarry, l_he time required (o load crushed rocks onto a iruck is equall

?1keiy to be cnlil}er 2 or 3 minutes (Fig. P2.33). Also the number of ?md«k.’
18 queue waiting to be loaded at any time varies considerably, as 1‘eﬁec(1’ i
i the following set of 30 observations taken at random. The tim(’: required ?g

No. of trucks

: . Relative
in queue observations frequency
0 6 0.2 -
f 3 0.1
2 9 .3
k! 9 0.3
4 3 0.1
5 0 0.0

Total = 3¢

load a truck is statistically independent of the queue size,
(a) If the_re are two trucks in the queue when a truck arrives at the quarry
what is the probability that its “waiting time™ will be less than 5 minutes?

Ans. 0,25,
Vs
g Quarry

(e[ (0 O

Queue Size

Figure P2.33

s
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(b) Before arriving at the quarry (and thus not knowing the size of the
queue), what is the probability that the wailing time of a particular
truck will be less than 5 minutes? Ans. 0.375.

'5 2,34 A chemical plant produces a variety of products using four different proc-

esses; the available labor is sufficient only to run one process at a time, The
plant manager knows that the discharge of dangerous pollution into the
plant waste waler system and thence inio a nearby stream is dependent on
which process equipment is in operation. The probability that a particular
process will be producing dangerous pollution products is as shown below:

process A 409
process B 5%
process ¢ 3094
pracess D 1697

All other processes in the plant are considered harmless.
In a typical month the relative likelihoods of processes A, B, C, and D
operaling through the month are 2:4:3:1, respectively.
(a) What is the probabitity that there will be no dangerous pollution dis-
charged in a given menth?
(b} If dangerous pollution is detected in the plant discharge, what is the
probability that process 4 was operating?
(¢} The poliution products that are discharged by the various processes
have diffevent probabilities of producing a fish kill in the stream that the
plant vses for disposal, as follows.

Process  Probability of fish kili
A 0.9
B 0.1
C 0.8
D 0.3

Based on these assumptions what is the probability that fish will be
killed by pollution in the stream in a given month?

{d) Of the four processes, which is the most fruitful one (in terms of mini-
mizing the hkelihood of fish kill) to select for clean-up if only one can
be improved?

235 The probability of occurrence of fire in a subdivision has been estimated to be
30%; for one occurrence and 109 for two occurrences in a year. Assume that
the chance lor three or more occurrences is negligible. In a fire, the probabifity
that it will cause siructural damage is 0.2, Assume that structural damages
between fires are statistically independent,

{a) What js the prebability that there wilt be no structural damage caused
by fire in a year? Ans. 0.904.

(b) If a smali town consists of two such subdivisions, what is the probability
that there wilt be some structurat damage caused by fire in the town in
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a year? Assume that the events of fire-induced structural damage in the

two subdivisions are statistically independent.  Ans. (.783.

2.36 At a construction project, the amount of material (say lumber for falsewory

available for any day is variable, and can be described with the f]'equenc

fiiag.ram of Fig. ‘1’2.36. The amount of material used in a day’s canstruction
Is either 150 units or 250 units, with corresponding probabilities 0.70 angd '

0.30.

(a) What is the probability of shortage of material in any day? Shor, e

occurs whenever the available material is less than the amount heedeq
for that day’s construction.

(b) If there js a shortage of material, what is the probability that (lhere [

were fewer than 200 units avaifable?

6%

.'E"

3

&... 04 %

& A= Amount OF Matar laf

Avoilabte
7 A
¢} 100G #50 200 250 300

Figure P2.36  Frequeney diagram of 4

237 The completion time of a construction project depends on whether the

2.38

carpenters and plumbers working on the project will go on strike. The
probabilities of delay (D) are 1009, 80, 40 Vs and 3% iF both go on strilke,
carpenters alone go on sirike, Plumbers alone &o oun sirike, and neither of them
strikees, respectively. Also, there is 609 chance that plumbers will strike if
carpenters strike, and if plumbers go on strike there is 30% chance that
carpenters would follow. 1t is known that the chance for the plumbers®
strike is 109, Let

C = event that carpenters went on strike

£ = event that plumbers went on strike
D = delay in project completion

() Determine probability of delay in completion. Ans. 0.178.
{(b) If there is a delay in compietion, determine the following:
() Probability that both carpenters and plumbers strike. A, 0.254.
(ii) Probability that carpenters strike and plumbers donot,  Ans. 0.736.
(iii) Probability of carpenters’ strike.  Ans. 0,390,
The water supply for a city comes from two reservoirs, @ and b (Fig. P2.38),
Because of variable rainfall conditions each year, the amount of water in
each reservoir may exceed or not exceed the normal capacity, Let 4 denote
the event that the water in reservoir a exceeds its normal capacity, and let B
denote that for reservoir b. The following probabilities are given: P(B) = 038,
P(AB) = 0.6, P(A | B) =0.7. In addition, the probabilities that the city
will have satisfactory supply of water if only one reservoir exceeds, both
reservoirs exceed, and none of the reservoir exceeds the normal capacities are

o 239
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Reservolr A

Reservoir B

Figure P2.38

0.7, 0.9, and 0.3, respectively. What is the probability that the city will have
satisfactory water supply? Ans. 0.764,

A water tower is located in an active earthquake region, When an carthquake
oceurs, the probability that the tower will fail depends on the magnitude of
the carthquake and also on the amount of storage in the tank at the fime of
shaking of the ground. For simplicity, assume that the tank is either fufl
{F) or half-full (H) with relative likelihoods of | to 3. The earthquake mag-
nitude may be assumed to be either strong ($) or weak (W) with refative
frequencies 1 to 9.

When a strong earthquake occurs, the tower will definitely collapse
regardless of the storage level. However, the tower will certainly survive a
weak earthquake if the tank is only hatf-full. If the tank is full during a weak
earthquake, it will have a 50-50 chance of survival.

If the tower collapsed during a recent earthquake, what is the probability
that the tank was full at the time of the carthquake?

For a county in Texas, the probabilities that it will be hit by one or two hurri-
canes each year are 0.3 and 0.05, respectively. The event that it will be hit
by three or more hurricanes in a year may be assumed to have negligible
probability.

This county may be subjected to floods each year from the melting of snow
in the upstream regions, or from the heavy precipitation brought by hurri-
canes, or both. Normally, the chance of flood in 2 year, caused by the melting
snow only, is 1074, However, during a hurricane there is a 25 % probability
of flooding. Assume that floods caused by the melting snow and foods
caused by hurricanes are independent events.

What is the probability that there will be flooding in this county in a year?
Before the design of a tunnel through a rocky region, geological exploration
was conducted to investigate the joints and the potential slip surfaces that
exist in the rock strata (Fig. P2.41). For economic reasons, only portions of
the strata are explored. In addition the measurements recorded by the instru-
ments are not perfectly reliable. Thus the geologist can only conclude that the
condition of the rock may be either highly fissured (#1), medium fissured (M),
or slightly fissured (L) with relative likelihoods of 1:1:8. Based on this
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Figure P2.41

inform.aiion, the engineer designs the tunnet and estimates that if the rogk
condition is L, the refiability of the proposed design is 99.9%. Howeyer
it it turns out that the rock condition 1s M, the probability of failure will bé
doubled; similasly, if the rock condition is H, the probability of fadlure wij|
be 10 times that for condition L.
(a) What is the expected reliability of the proposed tunnel design?  Ang
0.998. '
(b) A more reliable device is subsequently used to improve the prediction
of rock condition. 1ts results indicate that a highly fissured condition for
the rock around the tunnel is practically impossible, but it cannot give
better information on the refative likelihood between rock conditiong
M and L. In light of this new information, what would be the revised
reliability of the proposed tunnel design?  Ans. 0.9989,
(¢) IT the tunnel collapsed, what should be the updated probabilities of A
and L7 Ans. 0.2 0.8,
Three research and development groups, A4, B, and C, submitted proposals
for a vesearch project to be awarded by a research agency of the government,
From past performance records, the respective histograms of completion
time relative to the scheduied targel time ¢, are shown in Fig., P242. It is
known that groups 4 and B have about equal chances of getting the project
whereas C is twice as likely as either 4 or B 1o win the contract. ‘
Based on past performance records, determine:
(a) The probability that the project will be completed on schedule.  Aus.

0.60.
) Histogram Of Project
Histogram Of Project ) Completion For C

w2 60f Completion For A and B 8 60
g L g8
H 2
S 40} 5 a0l
j2 5 & 40
5 5 b
:‘;’ 20k 20 20 20 E 20 20 20
s ke
5 10 2
[ . B
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(b) 1f the project completion is delayed, what is the probabilily that it was
originally awarded to €7 Ans. 0.25,
Two independent remote sensing devices, A and B, n.mumed on an ai‘z‘piane
are used to determine the Jocations of diseased trees in a large arca of forest
Jand. The detectability of device A4 is 0.8 (that is, the probability that a group
of discased trees will be detected by device A is 0.8), whereas the detectability
of device B is 0.9. ) )
However, when a group of diseased trees has been detected its location
may not be pinpointed accurately by either device. Based on a detection
from device A alone, the location can be accurately d.etcrmm‘ed with prob-
ability 0.7, whereas the carrespending probqbilily with device B H:]OHC.IS
only 0.4. I the same group of diseased Lrees is detected by both devices, its
Jocation can be pinpointed with certainty. Determine the following.
(a) The probability thal a group of diseased trees will be detected,  Ans.
[¢

(b) '1‘:116_])1‘0bab';lily that a group of discased trees will be detected by only
one device.  Ans, 0.26. )

(¢} The probabitity of accurately locating a group of discased trees. Ans.
0.848,



3. Analytical Models of

Random Phenomena

3.1. RANDOM VARIABLES

In engincering and the physical seiences many random phenomena, of in-
terest are assoelated with the numerical outeomes of some physical (uantity,
In the various examples diseussed earlier, we were concerned with the num-
ber of bulldozers operative alter six months, the time required to complete g
project, and the flood of a river above mean flow level, all of which are
outcomes in numerical terms, However, we also saw examples i which the
outcomes are not in numerical terms—for example, the state of completion
of a project in one year, the survival or failure of a chain, and the availa.
pility of different modes of {ransportation. lovents of this Iatter type may
also be identified numerically by artificially assipning numerical values to
aeh of the possible alternative events; for example, the three states of
completion of a project in one year (definilely compleled, completion ques-
tionable, and definitely dneomplete) may be arbitrarily assigned the numbers
1, 2, and 3, regpectively,

In other words, the possible outeomes of a random phenomenon ean be
identified numerically, either naturally or artificially. In any case, an out-
come or event may be identified through the value(s) of & funetion; such a
function is a random variable, which is usually denoted with & apital letter,
The value {or range of values) of a random variable then represents g
distinet event; for example, if the values of X represent floods above mean
level, then X > 7 1t stands for the oceurrence of a fload higher than 7 ft,
and (referring to the example above) if Y is the state of completion of a
project in one year, then ¥ = 2 means that the project’s completion is
questionable in one year. In short, a random variable is a device (cooked
up when neeessary) to identify events in numerieal terms. IT enceforth, we
san then say that (X = a), or {X £ 0), or (¢ < X £ b) is an event.

More formally, a random variable may be considered as a rule that maps
events in a sample space into the real line. The mapping is one-to-one; also,
mutually exclusive events are mapped into nonoverlapping intervals on the
real Iine. In Fig. 3.1 the events £1) Ky, and so on, from the sample space S

B
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Somple Spoce S

Random Variable X

Real Line x
v Figrve 3.1 Mapping of events into real line through random variable X
o

are mapped inte the real line through the random variable X7 these events
e o -
can shen be identified as follows:

o= (a< X <b)
By = (e <X < d)

R
= (X< U(X>d); Bli=(c<X<h

Consistent with the underlying sample space, a random variable may be
T diserele or confinatous,

The purpose and advantages of identifying events in numerieal terms
should be obvious—=this will then permit convenient analytical deseription
“as well as graphical display of events and their probabilities.

Probability distribution of a random variable

2311,
:Bince the value of a random variable represents an event, it can assume a
spumerical value only with an associated probability or probability meas-
e, The rule for deseribing the prohability measures associated with all

the vadues of a randont variable is & probalilily distribution or “probability

law.
I X i# a random variable, its prohability distribution can always he

“deseribed by its ewmadalive distribution function. (CDF), which is

for all z*

Mol = PN €0 (3.1)

- Here X is a diserete random variable if only certain diserete values of & have

o positive probabilities, Altermatively, X is a continuwous random variable if

probability measures are defined for any value of z. A random variable may

5 ¥ Astandard notation is to denote n random varighle with a capital letter, and its value
Wi the corresponding lowerense letlor.
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also be hoth diserete and continuous; an example of such o widzed ¢
variable is shown in Fig. 3.2¢.

For a diserete random variable X its probahility distribution may alg,
be deseribed in terms of a probability mass funetion (PMI), which is simply,
4 function expressing P{X = 2) for all 2. Therefore, if X is o discrete 1‘;11{_
dom variable with PMI py(2,) = P{X = x,), its distribution { unetion ig

Fel) = PXS @) = B P(X=w) = 3 pele) (39

all g < all ai <

anday,

However, if X is continuous, probabilities are associated with Intervyly
on the real line (since events are defined as intervals on {he real ling),
consequently, at a specific value of X, such as X = z, only the density af
probability is defined. Thus, for a continuous random variable, the prohg. ©
bility law may also be deseribed in terms of a probability density functio,
(PDI), so that if fy () is the PDIf of X » the probability of X in the intervy)
{a, b]is

Pla<X <0 = [ few) do (3.3)
It follows then that the corresponding distribution funetion is
Feie) = X <) = [ e a (34)
Accordingly, il Fy(2) has a first derivative, then, from ¥, 3.4,
ety = 222 (3.5

We might reiterate that fy (@) is not a probability; however, fx (2) dz =
Ple <X < 2+ da) isthe probability that values of X will be in the inter-
val (z, 2 4 da].

It should he emphasized that any function used o represent the probabil-
ity distribution of a random variable must necessarily satisfy the axioms of
probability (sce Section 2.3.1). For this reason, the funetion must be non-
negative and the probahilities associated with all possible values of the
random variable must add up to 1.0. In other words, if Fy(z) is the distri-
bution function of X, then it must have the following properties:

(a) Fy(—w) =0 Fy({+w) = 1.0
h) Fx(z) 2 0, and is rondecreasing with a.
(¢} It is continuous with 2.

Conversely, any function possessing these propertios is a bona fide cumula-

)

C

(

Mixed Distribution

pxtx} or £, 0e)

Continuous X

feln}

PMF

Discrete X
Bona fide probability distributions

pxixsd

Figure 3.2
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tive distribution function. By virtue of these properties and Tigs. 3.2 i‘.hrough |
3.5, the PMI" and PDI are nonnegative funetions of x, whereas the Probg.
bilities of a PMF add up to 1.0, and the total arca under o PDT is also eag]
to 1.0. Figure 3.2 presents graphic examples of legitimate probabi]gty .
distributions, Figure 3.2 also illustrates the graphical characteristicy of
the probability distributions of disercte, continuous, and mixed randoy,
variables, E
We observe that we can write Fig. 3.3 as

b a
Pla <X <b) = [ (@) da — f fre(z) de
Sinlarly, for diserete X, we have

Pla<X <) = 2 pxlas) —

Z x (@)

nll wi<b wll oy <a
Thus, by virtue of Iqs. 3.2 and 3.4,
Plo <X €£D) = Fx(b) ~ I'v(a) (3.6

EXAMPLE 3.1

For an example of a discrete random variable, consider again the problem of & =

bulldozers in Example 2.1,

Using X as the random variable, whose values represent the number of pood _'
bulldozers after 6 months, the events in the sample space § are mapped (muuraliy) g

into the discrete values of the real line as shown in Fig. E3.1a.

Thus (X =0), (X = 1}, (X = 2), and (X = 3) can be used to identify the respec- :

tive events of interest,
1f the probability that a bulldozer will remain operational afler 6 months is

P = 0.8, then assuming the conditions between bulldozers to be statistically inde~ 1 :

pendent, the PMI of X becomes

POX = 0) = (0.2)} == 0.008

P(X = 1) = 3[0.8(0.2)%] = 0.096

PLX = 2) = 3[(0.8)°0.2] = 0.384

PX = 3) = (0.8)% = 0.512
whereas P(X = x) = 0 for all other x. These results can be portrayed graphically
as shown in Fig. E3.15. The corresponding cumulative distribution function (CDIF)
would appear as in Fig, E3.1c.

Analytically, the PMF described above is given by the hinomial distribution (sce

Section 3.2.3Y with 1 = 3 and p = 0.8,

EXAMPLE 3.2

To illustrate a continuous random variable, consider the problem described in
Example 2.14. I the volume of traffic and road conditions along the 100-km highway

3.1, RANDOM VARIABLES a5

o | GBB | GGB |
g BGB GRG 8 Somple Space $
BBG BGG

| I ] |

: } ! I Random Voriobie X

! ! | |

D WO SO

ko] t 2 3 X

Figure E3.1a

py (%))
A 0,512
0,384
0.096
0,008 I |
¢) i 2 3 4 TR

Figure E3.1b PMY of X

Fx( x) 1,00
A
0488
0,104
0,008
i ] ] o
0 i 2 3 4 ¥

Figure E3.1c CDY¥ of X

* are about the same, the likelinood of accidents is roughly uniform over the 100-km

distance. If X is a random variable whose values denote the distance (from km 0}

: at which accidents occur, then the probability density funclion (PDF) of X is
-+ constant between 0 and 100 km; that is

fx@® =¢ 0Lx <100
= () elsewhere

1 2o where ¢ = 1/100. Graphically, this is shown in Fig. E3.24. The corresponding distri-
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3.1, RANDOM VARIABLES a7
fy [x) fdnd
J
3
G
=L
R TiT:)
o 60 >
Figure E3.2a PDF of X
S Ib P
Fy(0) Figure E3.3 PDF ol X
A :
1,00
| EXAMPLE 3.3
| [ :. . Suppose that a random variable X has a PDYF of the form
l - [e@) —oxt 0 <x <10
I ’ =0 elsewhere
Felx) = u;_u | ::'{Scc Fig. E3.3.) Under what condition (i.e. what value of «) is this function a bona
| i fide PDIR?
| In order Lo satisfy all the properties of & PDF, we must have
0 100 - o "
R ox dx = [.0
Figure E3.2b CDF of X L
500 from which
: 0P = 1.0
3 -
bution function is H and 3
” : o e
Fy(x) = f cdx = ox = Tgf) 0 <x <100 * 7 1000
0 The probability
= 1.0 x > 100 . 53 0,575
PX =] — §) =1 | ody = | e = 0,
=0 x<0 (X>5) =1 —PX <3) .[,i()OO“ 600 7
and graphically is as shown in Fig. E3.2b. Then, for example, the probability
PQO < X < 35) [‘35 i . $.1.2. Main descriptors of a random variable
= e (X =2 0.15 R ys I o . -
- alternati o J20 160 The probubilistie characteristies of a random variable would be deseribed
or, alternatively, using Eq. 3.6, Lompletely if the form of the distribution function (or cquivalently its
P(20 < X < 35) = F(35) — Fy(20) Drobability density or mass function) and the associated paramcters are
35 Specified. In practice, however, the form of the distribution function may
_ 20 1 : :
=100 " 160 = 0.15 ot be known; consequently, approximate description of a random variahle
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is often necessary. The probabilistic eharacteristios of o random variahy
may be deseribed approximately in terms of cortain key quantities op Mg
deseriptors of the random variable; the most mmportant of these
central value of the random variable, and a measure of the dispersion of Ity .

3

values, A skewness measure may algo be important and usefu) when the .

underlying distribution is known to be nonsymmetrie.
Moreover, even when the distribution funetion is known, the pring

- . hy
quantities remain useful, because they convey information on the Propey.

tions. Also, the parameters of the distribution may be derived as functiong
of these quantities, or may be the parameters themsclves {see Chaptor 5

Mean or expected value (a central value).  Since there is a range of pog. -
sible values of a random variable, we would naturally be interested in S0mp :;:' .
central value, sueh as the average, In particular, because the different valueg a
of the random variable are associated with different probabilities or prohg.

known as the mean value or the expected value of the random variable,
Therefore, if X is a discrete random variable with PMI Px (2, it
“weighted” average value, denoted E(X), is |

B(X)y = 3 @ px(2)

all oy

(3.70)

Similarly, for a continuous random variable X with PDF Jx (), the mean =&

value is

B(X) = fw 2 fx (@) de

Mathematical expectation. The notion of a welighted average or exe o
peeted value can be generalized for a funetion of X, Given a funetion ¢(X)
its expected value Bg{X)7), obtained as a gencralization of I5g. 3.7, is

Efg(X)] = 2. gladpx(z:) (3.8a)
all
i X is diserete; whereas, if X is continuous,
(X)) = [ g(@)fsx) do (3.80)

In cither ease, EFg(X) 7] is known as the mathematical expectation of g{X).
Other quantities that are used also to designate the central value of &
random variable inelude the mode (or modal value) and the medsan.
The mode 2 is the most probable value of a random variable; that is, it is
the value of the random variable with the largest probability or the highest
probability density.

e

are fhes T

o . . : L
' -j]’DF is symmetric and unimodal {(single mode), these three quantities

A0 which py s
SF ol squared deviations, or, In accordance with 2. 3.8, it is the mathemadical
(3.7h) it~

s continuous with PDT fi (=), the variance s
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The medion 1s the value of o random variable at which values above and
Jow it are equally probable; that s, 1f @, I8 the median of X, then
¢ !

IF.\' (:‘)-:m = 0.50 (3.9)

in general, the mean, median, and mode of a random variable are dif-

ont, especially if the density funcetion is not symmetric. However, if the

el b . R . . < aineide
ties of the random variable that are of first importance in practical applieg. 1 ¢ L. ) , -
- N Jariance and standard deviation (measures of dispersion). Besides the
- eentral value, the next most important quantity of a random variable is its
“peasure of dispersion or variability; that is, the quantity that gives a

H

i peasure of how elosely the values of the variate are clustered ((.n'_ con-~
: :"'vl?l'-"—“?]-“" how widely they are spread) around the eentral value. Intuitively,
T geeh a measure must be a funetion of the deviations from the central value,
. L . . i fowever, whether a deviation is above or below the central value should be
hility densities, the “weighted average” would be of special interest; this is . f po significance; consequently, the funetion should be an even funetion of
e deviations.

“If the deviations are taken with respect to the mean value, then a suitable
ogverage measure of dispersion is the werieice, For a diserete random

yariable X with PMIT py {2}, the variance of X is

Var(X) = Z (@ — py)px(a) (3.10)

all «f

F{X}. We ohserve that this is simply the weighted average

expeetation of g{.X) = (X — px)® Thercfore, according to Kq. 3.8, if X

Var(X) = [ (x — we)* fx (2) dx (3.11)
Fxpanding the integrand in Eq. 3.11, we have
Yar(X) = [ (a? — Zuxa b ux®fx () de
) = XY — 2uc (X)) + py?
Thus & useful relation for the variance is
Var(X) = E(XN?) — puyt (3.12)

I Fg. 312, the term B{X?) is known as the mean-square value of X,
- Dimensionally, @ more convenient measure of dispersion is the square
100l of the variance, or the slandard devivdion o that is,

XY

ox = A/ Var( (3.13)
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It is hard to say, solely on the basis of {he variance or standard deviag..
APl . i0p &

whether the dispersion is large or small ; for this purpose, the measure Q%

dispersion relative to the central value is more useful. Tn other wopg,

whether the dispersion is large or small is meaningful only relative g the

central vatue. For this reason, the coefficient of variation {COV),

oy
6X = e

5

is often a preferred and convenient nondimensional measure of dispergi(}n

or variability.

EXAMPLE 3.1 (continued)

Referring back to Example 3.1, the expecled number of operating bulldozerg at &

the end of 6 months is

E(X) = 0(0.008) + 1(0,096) + 2(0.384) 4 3(0.512)
= 2.40

This illustrates the fact that (he expected value of a discrete random variahle May

not be a possible value of the random varjable,
The corresponding variance is
Var (X) = 0.008(0 ~ 2.4)% + 0.096{1 ~ 2.4)
F0.384(2 — 2,41 4 0.512(3 — 2.4
= {).48§

Using Eq. 3.12, we may compute the variance also as
£ xq y I

Var (X) = [12(0.096) + 22(0.384) + 3*(0.512)] — (2.40)*
=048

The standard deviation, therefore, is
oy = V048 = 0.69
and coefficient of variation (COV) is

‘ 0.69
] v == e
X240

EXAMPLE 3.3 (continued)

= (1.29

For the random variable X with the density function of Example 3.3, the mean
and variance are, respectively,

14
. 3x? )
E(X) = fu X (1—0—66) dx
] o300 3
o B m o s L
[4000 * ]0 00 g =790

L5

(3.14) : 
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¢ 7 532 3xt »
Vartd) = L (= 15F \ 15 )

3

140
w0 [t = 15x3 4 (7.5 dx = 3.75
1000 J,

or, by B9 312,

T ECAYN (7.50)% = 3.75
Var (X) = [) X (Tﬁﬁ"é) ax L7 '

“Therefore the standard deviation is

oy = V35 = 1.94

and the corresponding COV is . 101 .
T T

From Fig. E3.3, the modal value is obviously £ = 10. To determine the median,
Eq. 3.9 yields 1 L
——dx = 0.
fu 1000

x% = 500

T

from which we have

the median is
Thus X, 7.9

EXAMPLE 3.4

A contractor has an experience record that shows 60% of his p:‘(}]ec_ls' are ;‘01111:
pleted on schedule. If this performance record prevails, the probability "01 }.u,
number of completions in the next 6 jpbs can be descr[beq by the b;no-lglnla (1]15;
tribution (see Section 3.2.3) as follows: if X is the number of jobs completed among

6 future jobs, then ]
PX = x) = ( )(0.6)-"3(0,4)“”"3c x=0,1,2,...,6
X

= () otherwise

6 6!

The mean number of jobs completed on schedule, therefore, is

where

4 6 -
EW) =3 (x) 650 40

6
= ] (?) (0.6){(0.4)* 4 2 (2) (0.6)2(0.4)

6
+3 ((3)) (0.6*(0.4)° + 4(4) (0.6)%(0.4)
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5% o6y + 6f° 0.6)8
es(GJosran +o*)os

= {(L03686 + 2(0.13830) -+ 3(0.27640)
+ 40.31110) + 5(0.18660) + 6(0.04666)
= 3,60

Therefore the average number of jobs among 6 that can be completed on schedyg,
is between 3 and 4,

‘The corresponding variance is
&

Z) (x — 3.60)" [(i) (0.6)»’“(0.4)&5,}

Yar (X)

il

{—3.60)* ((6)) (0.4)% 4 (—2.60)% (f) (0.6)(0.4)*
6 6
4 (—1.60)® (2) (0.6)2(0.4)* 4 (-—~0.60) (3) (0.6)(0.4yn
4+ (0.4)* (:) (0.6)4(0.4)* + (1.40) (2) (0.6)°(0.4)

+ (2,400 (2) (0.6

= 0.0531 4 0.2482 + 0.3539 4 0.0995
+ 0.0498 + 0.1626 +4- 0.2684
= |.2355

The standard deviation, therefore, is
oy = A/ 12355 = (.11

and coeflicient of variation (COV) is

In this case, X = 4 has the highest probability; hence the mode is 4,
EXAMPLE 3.5

Suppose that the useful life T (in hours) of welding machines is not predictable, but
can be described with a PDF known as the exponential distribution (see Section

3.2.10
Sy =24 1 >0
= {) t <0
in which 2 is a constant parameter. Graphically, this probabi]ity density function is
shown in Fig, E3.8a. In this case, the corresponding distribution function is

I3
Re Ay mm | - pmdt

Fpr) = [
J0

which is also shown graphically in Fig. E3.55,

3.1, RANDOM VARIABLES 03

f 1)

{a)
Frlt)

L0

¢ tb

PDYF and CDF of T

Figure E3.5

The mean life of a welding machine then is

pop == E(T) = '(

o0
t-Ae M dt
{

. Integration by part will yield = 1/4. Therefore, for tl?e expongntial disiriblrjlion,
i the parameter 4 is equal to the reciprocal of the mean life; th'at is, A = IIE(T). )
. The mode f in this case is zero, whereas the corresponding median life ¢, is
- obtained as follows. According to the definition of the median, Eq. 3.9,

" t?ﬂ
J AemAdr == 0.50
R 0
~i:thus obtaining

: 0.693

-In 0.5 .

A A

! i

3 ..'_:Therefore
o P = 0.693 0

ol = f (; — 1) Fe My
: o A

=

The variance of T71s

_.Inlegration by parts yields

7
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Thus the corresponding standard deviation is
1

Op == = = [

A

Therefore the COV of the exponential distribution is
6p = 1.00
Measure of skewness. Another useful property of a random variable ig
the symmetry or lack of symmetry of its probability distribution, and its
associated degree and direction of asymmetry. A measure of this asymmetry
or skewness is the third central moment, or
E(X —ux)® = 37 (2 — ux)® px (@)

all =z

for diserete X
and

for continuous X

BOX = )t = [ (2= ) fc(a) de

Observe that E(X — ux)? is zero if the probability distribution is 8ym-
metric about uy: otherwise it may be positive or negative. It will be positive
if the values of X that are greater than wy are more widely dispersed thay
the dispersion of X < ux. On the other hand, this third moment about
the mean will be negative if the reverse situation is true. Therefore, the
skewness of a random variable may be designated as positive or negative
in accordance with the sign of the third moment % (X — ux)?; the magni-
tude of this third moment gives the corresponding degree of skewness,
These properties are illustrated in Fig. 3.3.

A convenient nondimensional measure of skewness is the skewness
coefficient,

o E(X —py)?

3
Tx

9 (3.15)
Analogies with properties of area, The mean value and the variance
correspond, respectively, to the centroidal distance and the central moment-
of-tnertia of an ares. To sce this, consider a unit ares having a general
shape shown in Fig. 3.4,

The centroidal distance 2 of the ares is

fw zf(z) dz

P = / f (2) du (3.16)
area e

which is also the first moment (about ) of the irregular-shaped area.
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Pasitive Skownass

fyix}
* E (X~ 40 » E(X)-4)°

1x,

Hegotive Shawrsss
Ty (x) E {4 ~F 1% < E (Xp-pph

T,

Figure 3.3 Asymmetric PDF

The moment of inertia about the vertical centroidal axis is

I, = f ( ~ 20)tf(z) da (3.17)

Comparing Eqs. 3.75 and 3.11 with Egs. 3.16 and 3.17, respectively, we

see that the mean value is equivalent to the centroidal distance, whereas
the variance is equivalent to the centroidal moment of inertia of an area,

In this regard, we can therefore refer to the mean value as the first

Area=1.0

Figure 3.4 An nregular area
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moment, and the variance as the second (central) moment of a rangdg,
variable. More generally, extending this terminology, we shall refer ¢

B(X") = fe 2 fx (2) d

bt -1

(3.18)

as the nth moment of X.

MOMENT-GENERATING AND CHARACTERISTIC FUNCIIONS*

The approximate description of a random variable (discussed in Section 310
can be improved with a knowledge of its higher-order moments. indeed,

be completely described. This means that a function through which ali the
can be generated is an alternative way
variable; such a function is a moment-generating function, Its complex
characteristic function.

The moment-generating function of a random variable X, denoted Gyls), is i

defined as the expected value of ¥ that js,
Gy (8) = EesX)

where 5 is an auxiliary {deterministic) variable,
Therefore, if X has a PDF Jx(x), the corresponding moment-generating function

is ;
Gy () = f e f o Ax) dx (3.20a)
whereas if X is discrete with PME
Gyl(s) = D eMmp(x)
all x;

From Eq. 3.20a we observe that

dG y (s) “
%7\8_ _ :_-f X (x) dx
Therefore N
dG (0
(;’:‘( ) L(X}, the expected value of X,
Similarly,
d*G (0 =«
* )
and, in general,
{72 - 0 @
%“) - f X (x) dx = E(X7) (3.21)

Therefore the #th moment of a random variable is

given by the nth derivative of its
moment-generating function evaluated at s = 0,

¥ This section is presented here only Tor mathematioal definition; the materiad is not

necessary for understanding the remaindor of the book.

if al the .
moments of a random variable are known, jts probability distribution woulg alsg 07

Momentg L
of describing the probability law of a randoy b
form j5 4 s

(.19)

(3.208)
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31 can aiso be shown that the variance is given by

12 . .
Var (X) = (;sz In G (0) (3.22)
The characteristic function of X is defined as
ba(s) = BN = G (i) (3.23)
g i which 7 = Ve 1. Therefore
| Pyls) = f ez‘”‘/i\- (x) dx (3.24)
o o
° dy(s) =3 ¢ p(xy) (3.24h)
all any
' “[n terms of the characteristic function, the a#th moment of X is given by
' . I d(0)
IZ(XH) = Z;“)*?“l W (3.25)
whereas the special relation for the variance is
d*

. ..3 2. USEFUL PROBABILITY DISTRIBUTIONS

2 Any funetion possessing all the properties eited -(‘.aﬂier {in Section I?.l.fl)
.ca-n‘ he used to deseribe the probability distribution of a 1'and‘(nn variable,
However, there are o number of diserete and continuous functions that are

S gpecially useful because of one or more uf{ the fo]l(m'ing.1'.-‘_11‘.?021:‘;: (.]) '1.‘;1(:‘
- function is the result of an underlying pliysical process and is der!v.(zd on the
2basis of certain physically reasonable assumptions; (2) the funetion is f’il.()
result of some limiting process; and (3} it is \\'id.(*!_y known zmgi the 1¥em_!s—
cosary statistical information (including probability tables) is available

P widely. Several of these prohability distzibution functions are presented

and their special properties deseribed in this seetion.

The normal distribution

3.2.1.
'l’erha.ps the best-known and most widely used pmhalnllty‘ (,hsrt.i‘xlmtmn 1sl
the normal distribution, also known as the Gaussian distrebudion. The norma
- distribution has a prebability density funetion given by

-m 1(’[%_,11.)2"] —we < x < e (3.27)
2\ « i

. 1

v{X) = = eXp
Jxtw) a2
where goand o are the parameters of the distribution, which are also 1".110
megn and standard deviation, respeetively, of the variate. A short notation
for this distribution is N (g, o), which we shall adopt.
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06
0.4_
o2
0 s
06—
S
8

Figure 3.5 Density functions of the standard normal distribution

The standard normal distribution. A Gaussian distribution with
parameters 4 = 0 and o = 1.0 is known as the standard normal distribu-
tion and is denoted appropriately as N (0, 1). The density function, ac-
cordingly, is

1
Js(s) = o gmime’ —w < § < (3.27a)
Several density functions of N (0, 1) are shown graphieally in Fig. 3.5;
of some interest are the total probabilities within a specified number of
standard deviations from the mean (which is zero), as shown in Fig, 3.5.
Observe that the density function of N (0, I} is symmetric about zero.
Because of its wide usage, a special notation ®(s) is commonly used to
designate the distribution funetion of the standard normal variate S; that is,
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fs(si

Probabilitys p

i

0] SP 5

Figure 3.6 The standard normal density function

p(s} = Fs(s), where S has N(0, 1) distribution, Referring to Iig. 3.6,
we have ‘

‘1—"(87,) =P

Conversely, the value of a standard normal variate at a cumulative proba-
hility # would be denoted as

5y = @)

This notation will he used throughout this book.

The distribution funetion of N (0, 1), that is, ®(g), is tabulated widely
as tables of normal probabitities—{or example, Table A.1 of Appendix A.
Observe from Table A.1 that the probabilities are given only for positive
values of the variate. This is because by virtue of symmetry of the standard
narmal PIYT about zero, the probabilities for negative values of the variate
can he cbtained as

B(—5) =1 — @s) (3.270)

By the same token, values of s corresponding to p < 0.5 may be obtained as
s = & (p) = —&I{1 ~ p) (3.27¢)

With the table of ®(s), probabilities of any other normal distributions
can then be determined readily as follows. Suppose a normal variate X with
distribution N (g, o) ; the probability

) e b
B O"\/ S o

Clearly this is the arca under the normal eurve hetween a and b, as shown
in Ifg. 3.7. Theoretically, the required probability ean be obtained by

Pa<X <

L--ﬁ
o
=
=

T d
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fx(x)h

G a m b x
Figure 3.7 PDF for N(y, o)

evaluating the preceding integral di ; i
. gral directly; however, this ean b ‘
by making the following change of variable: an be done also

r —

§ = and dr = ¢ds
Then
1 (b—p)/o
P(a < X < b = ___f —~{1/2}a%
= ) 0"\/211' (a—p) e e ’ ds

1 (Bwp) fo
== f e~ (De? Jo
Ver a—u)fo

which may be recognized to be the area of the standard normal density

function between (a — ) /o and (b — i i
can bo detoramions o ) ( u)/e, and thus according to Eq. 3.6

rocxsn = i) o2

Suppose, from historical record, that i i i
i cotupated (o bt moe N in.: lsain.t)k.le total annual rainfall in a catch basin

(a) What is th ii ; .
40 and 70 in. ? ¢ probability that in future years the annual rainfall wiil be between

(3.28)
EXAMPLE 3.6

3.2, USEFRUL PROBABILITY DISTRIBUTIONS Iod

According Lo Eqs. 3.28 and 3,27, this probability is

o 70 — 60 © 40 — 60
( is ) - 15

®(0.67) — D(~1.33)
= P0.67) — [1 — ®(1.33)]

i

P40 < X < 70)

.Ffﬂln Table A.1 we therefore obtain the probability

P(40 < X < 70) = 0.7486 ~ (1 — 0.9082)
= 0.6568
(b) What is the probability that the annual rainfall will be at least 30in.?

, 30 — 60
O{ex) —~ 4 (*‘-—!—5‘“‘“)

| e P(=2.00) = 1 - [l — ©{2.00)] = @(2.00)
= (.9772

P(X > 30)

i

(c} What is the 10-percentile annual rainfall in the basin (1hat is, the value of the
variate at which the cumulative probability is 1090)? In other words, the probability
that the anmual rainfall will be less than the 10-percentile value is 1057,

1n this case, we wish to determine x 4 s0 that

I,(X < “".1{)) = (.10

X, — 60
(b( T = (0,10

. Therefose

Observing from Table A1 that probabilities less than 0.50 are associated with

negative values of the variate, and using Eq. 3.27¢, we have
X 10 60

i3 = O O10) = —D1(0.90) = —1.28

- Hence the 10-percentile annual rainfall is

X 1 = 60 — 1.28(15) = 40.8 in.

. EXAMPLE 3.1

A shell structure is resting on three supports, 4, B, and €, as shown in Fig, E3.7,

« Even though the loads from the roof transmitted to the three supports can be
“estimated accurately, the soil conditions under 4, B, and € are not compietely
It predictable. Assume that the settlements p,, pp, po are independent normal
Lo ovariates with means 2, 2.5, 3 em (centimeter) and coeflicients of variation 205,
i 209, 25 %, respectively.

(a) What is the probability that the maximum settlement will exceed 4 em?
(b) I it is known that A and B have settled 2.5 and 3.5 cm, vespectively, what is

. the probability that the maximum differential settlement will not exceed 0.8 cm?
o That ot will not exceed 1.5 em?
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o

Figure E3.7

Solutions

{a) P(max p > dcem) = 1 — P(max p < 4 cam)
=1 —=Plpgs 40 py <4 pp £ 4)
=1 = Plpy <4 Ploy <4 Plpe < 4)

4 - 2 4 — 25 4 — 3
=1~ "’(—5;:“)‘D (—os"“) @ (Tf."f.s‘)
=1 — D5} D(3) - B(1.333)

=1 —1 x 059986 x 0.9088
= (0.0925

|

I

(b) Since the diffcrential settlement between A and B, that s, A =35cm —
2.5¢m = | om,

P(ALL €£08cm) =0
regardless of what p. is.

For the event A s less than 1.5 cm, we have to know what peris I pe < Lem
or pe > 4cem, then & 4 > 1.5 em; also if g < 2cm or p, > 5cm, then Apper >
1.5 em. From these two conditions we see that the acceptable region of pp is
(2em < po £ 4 cm). Any other values of p,. will definitely give rise to a maximum
differential settlement exceeding 1.5 em. Therefore

PlBpay £ 1.5em) = P2em < p < 4 cm)

ot 3) 23
0.75 Q.75

P{1.333) — ®(—1.333)
0.9088 — 0.09i2
= 0.8176

3.2,2, The logarithmic normal distribution

A random variable X has a lgerithmic normal {or simply log-normal}
probability distribution if In X {the natural logarithm of X) is normal.
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fx(x)
41
{ <ol
B
Medlan = LO
2}
'_
00 0 ? X

Figure 3.8 Log-normal density functions

In this case, the density funetion of X is

“ 2
fx(z) = :‘7%??; exp[w é(%) ] 0<a< o (329)

where A = E{ln X) and { = ~/Var(In X) are, respectively, the mean and
standard deviation of In X, and are the parameters of the distribution.
Equation 3.29 is illustrated in Fig. 3.8 for various values of ¢

Because of its relationship with the normal distribution (that is involving
a logarithmic transformation), probabilities associated with a log-normal
variate can also be determined using the table of standard normal proba~
bilities. We show this as follows.

On the basis of Eq. 3.3, the probability that X will assume values in an
interval (g, b] is

13

I/lnz — A\
Pla<X<bh = -\—/%;—aexp[— 5(31} )]dm

Let
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then dr = af ds, and

. 1 {n byt
P((L < X < b) = Vz.ﬂjf g (42)s? ds
{n a—Mft

Inb— Inae — M
S, Y S — ) e B e .
( ¢ ) ( [y ) (3‘30)

In view of this convenient facility for caleulating probabilities of log-normg|
variates and also because the values of the random variable are alwayy
positive, the log-normal distribution may be useful in those applicationg
where the values of the variate are known to be strictly positive; for ex.
ample, the strength and fatigue life of material, the intensity of rainfa))
the time for project completion, and the volume of air traffic.

We observe from Eq. 3.30 that the probability is a function of the param.
eters A and {. These parameters are related to the mean # and standard
deviation ¢ of the variate as follows.

Let YV = In X, which is N (A, ¢). It follows that X = e¥ and

E(X) = E(e¥)

oL f . Cx)[__ 1(?£_:_,J\)j )
RV S R N B

1 fwx' 1(y~—>\2‘]
Vort mwt Py A wry

By completing the square on the exponent, we obtain

IR A ?_{_A.jf‘mﬂ?l)z} IR 1
g o= [ iy MW(.XD{ 2( p r,i_?," exp(h 4 372)

We recognize that the quantity within the brackets is {he total unit area
of the Gaussian density function N (N 4 ¢ )5 henee

go=exp(h + §¢%)

)

i

M

Thus we have
AN=1Inyg — §2 (3.31)

Similarly, we derive the variance of X as follows:

1 o - 1 — N 2
F{X?) = _\“/Zﬂ*kg; e (‘,xp[m Q(ij ) ]dy

— 222 {yﬂ = 2(x + 207y -+ V}J dy

1 = i
= \/27r§' / exXp

v

3.2, USEFUL PROBABILITY DISTRIBUTIONS 106

By completing the square on the exponent, the above integral yields

! « Iy — (A - 209\, ) .,
XD = [ \/}2'“ f 3 exp{w 2(?}({)) a’-y}J exp[2(0 4+ ¢ ]

= exp[2{n + )]

* gphence, according to Eq. 8.12, and using liq. 3.31,

Var(X) = exp[2(A + ¢ 7~ exp[2(\ + %))

Wt = 1)

. from which we obtain

0.‘2
= in(l + —5) (3.32)
in
:. 1f g/.u is not lzu‘ge, say SU3(], hl[l e (02/,112)] o~ cr?/.u,?-, In such Cases,
therefore,
t~7 =5 the COV (3.32a)
3

The median is often used to designate the central value of a log-normal

2 variate. If @, is the median, then by definition, Tig. 3.9,

P(X € 2w) =05

P A
q:(@—?i—--—----—-w) = 0.5
$

oor

Thus

El_’r’",n:)\ o (I)-A-I(O‘ 5) = {)
{
[herefore, in terms of the median, the parameter A iz
A= lInz, (3.33)

T eonversely,

Fyy = {3.33a)

- Comparing Eqgs. 3.31 and 3.33 und using q. 3.32, we obtain the relation

between the mean and median of a log-normal variate as

. Thus, we also have
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This means then that the median of a log-normal variate is always less than
its mean value; that is, 2, < p.

EXAMPLE 3.8

In Example 3.6, suppose that the annual rainfail has a log-normal distribution
(instead of normal) with the same mean and standard deviation of 60 and 1% in,
respectively. What would then be the answers to the questions raised in Example 3.6’_;

We first obtain the parameters 4 and { as follows. Using Eq. 3.32a,

15
Z_;—__ (;6 —_— 0.25

and from Eq. 3.31
A= In 60 — 1(0.2502 =409 — 0,03 = 4.06

(a} In this case, the probability that the annual rainfall will be between 40 and

T0 in. is
q)(ln 0 — 4.06) B q)(ln 40 — 4.06)
0.25 0.25
©0.75) - D(—1.48)
= (.773373 — 0.069437 = 0.7039
'(B) The probability that the annual rainfall will be at least 30 in. is

In 30 — 4.06
w3 ] o D e
PX 2 30) =1 0( 5% )

PAO <X <70)

i

1 = ®{--2.64) = 0.9958
(¢) The 10-percentile annual rainfall is
inxq, — 4.06
[(EY . S e
( 035 ) 0.10

Inx,, —4.06
0.25
Inx 1y = 4.06 — 1.28(0.25) = 3,74

= —]1.28

Therefore
X g = €8T = 42 10 in,

3.2.3. Bernoulli sequence and the binemial distribution

Problems of concern to engineers and engineering planners sometimes re-
quire the consideration of the potential occurrence or recurrence of an
event in a sequence of repeated “trials.” For example, in allocating a fleet
of construction equipments for a projeet, the anticipated conditions of
every piece of equipment in the fleet over the project duration would have
some bearing on the determination of the required flect size; whereas, in
planning the flood control system for a river basin, the annual maximum
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fow of the river over a sequence ol years would be in‘];m.rt:mt in t-hle‘ deter—.
mination of the design flood. In these cases, the opfn-a.i,.].uzml conditions of
each picee of equipment, and the maximum flow of tl?e 1'1v(-?1' (3:1(:13 year rela-
ﬁve to a specified flood level, constitute the z‘uspet:i.we i-rmi’.s.. These prf)i‘)—
tems are also such that there are only two possible outcomes in cach t»l‘i'ﬂ-l,
namely, the occurrence or nonoccurrence of an event—each piece of equip-
ment may or may not malfunction over the duration of the project; (?e?ch
vear, the maximum flow of the river may or may not exceed some specified
Aood tevel. '

Problems of the type deseribed above may he modeled by a Bernowili
sequence, Which 1s based on the foliowing assumptions:

1. Bach trial has only two possible outcomes: the cecwrrence or non-
orewrrence of an event.

g9, The probability of oceurrence of the event in each trial is constant,

3. The irials are st-a.{.ist.écaily independent.

Therefore, in the examples cited above, if the operational conditions he-
sween equipments are statistically independent and the probability of mal-
funetlion for every piece of equipment is the same, then the conditions of
the entire fieet of equipments constitute a Bernoullt sequence. Similarly,
if the annual maximum floods are statistically independent, and each year
the probahiiity of the annual flood’s exceeding some specified level is con-
stant, then the annual maximum floods over g series of years also constitute
a Bernoulli sequence.

The binomial distribution. 1f the probability of oceurrence of an
event in each trial is p (and probahility of nonoccurrence is 1 — p), then
the probability of exactly m occurrences among » trials in a Bernoulli se-
quence 1s given by the bdinomial PAMI as follows:

PX =2) = (2);0?(1 — e z=01,2..,n (3.35)

where o and p are parameters, and %) = a!/[xl(n ~ )]s the binomial
coefficient (see Appendix B). The PMI for such a distribution with p =
0.80 and n = 3 wag illustrated earlier (Exmnple 3.1).

We ohsorve that the probability of realizing a particular scquence of
exactly @ occurrences of the event among » trials is p<{f — p)*= However,
the specific sequence of trisls in which the cvent may oceur = times can be
permuted among the » trials, so that the number of distinet, sequences with
exactly 2 oceurrences is (3); for example, if there are & breakdowns among a
floet of » picees of equipments, the 2 breakdowns may be realized in ()
different, sequences. Thus we obtain Eq. 3.35.
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Ttegrrormat: s 1500 he
LR

Operationc: Life, hr
T

r
22
ES

Opesationol Life, hrs

Figure EK3.94

Machina Ne.

Figure E3.95

EXAMPLE 3.9

Suppose that five road graders are used in
life T of such equipments is known to h istributi
i s ! ave a log-normal distribution with an
o1 e men & ve a ¢ : ncan
life 01"[],509 hir and a (.(.)'V of 309 (see Fig. £3.9a). Among the five machines ‘in
use, what is the probability that two of them will malfunction in less than 900 hy

Of OPCI ation? ASSﬂn]e 8 1) & ] i
i stati tical inde )LlldC“Ce bE[WCL!l t;lc C(}”d[“(}ﬂ Q
] < S f ﬁ

Each grader may or may not malfunction after 900 hy of on, T
- S . hr of operation. The probabil;
of malfunction within this period is determined as fo[]ows}: " The prob 1b””}'
{~0.30
A= 1500 = §(03) = 7.27

a highway project. The operationg]

e

Therefore the probability of a machine malfunctioning in 900 hir (see Fig. B3.94) is

In 909 — 7.27
0.30

i

P =P{T <900) = (D(

B~ 1.56) = 0.0594

IFor the five machines taken collectively, the actual operational [ive ay c
ceivably be as shown in Fig. E3.95. That};s, as il%ustrateld in Fig, E3.9(Z:IJS 11]1};(11):{;1(:23
1 and 4 have operational lives less than 900 hr, The probability that machines | and 4
will malfunction within 900 hr whereas 2,3, and 5 remain operational is p*(1 = p )
But the two malfunctions may happen to any two among the five machines: c{)n;
sequently, if X is the number of machines ma]funct:'oning in 900 hy, v

5
PO =2) = (2) (0.0594)2(0.9406)3

5!
RETET
= 0.0294

(0.0594)%(0.9406)8

The probability _o{ malfunction ameng the five graders (that is, malfunction in
o1e or more machines) is

PX 2 1) =1 « PX = ()
[ (0.9406)° = 0.2638

i

< ond ) . _ .
: i]lustmi;ed above, other problems of this nature include the following. In a

s . . . . \
'mgnituring the daily water quality of a river on the downstream side of an
L industl'iﬁ-l plant, the water tested daily may or may not meet the pollution

- ontrol standards; the individual items produced on an assembly line in an
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Tn spite of its simplicity, the Bernoulli model is quite useful in many
,,}gini’(‘]'mg applications. Itngineering problems involving situations with
v two alternative possibilities are numerous. Aside from those cited and

gies of soil borings, each boring may or may not encounter boulders; in

industrial plant may or may not pass the inspection to assure produet qual-
ity and & nuelear power plant may or may not he hit by a tornado in a
yém‘. In each ecase, if the situation is repeated, we have a Bernoulli se-
;lueli(:e. ) . )

It should be emphasized also that in modeling problems with the Ber-
poulli sequence, the individual trials must be diserete. In spite of this re-
guirement, however, certain continuous problems may be modeled (ap-
p;'oxinmtoly at least) with the Bernoullt sequence, For example, time and
space problems, which are generally continuous, may be modeled with the
Bernoulli sequence by diseretizing time {or space) into finite intervals and
gdmitting only two possibilities within cach interval; what happens in
each time {or space) inderval then constitutes a trial, and in the series of
intervals a Bernoulli sequence. Consider for example the following.

EXAMPLE 3.30

In planning the flood conirol system for a river, the yearly maximum flood of
the river is of concern. Suppose that the probability of the annual maximum flood
exceeding some specified design level /i, is .10 in any year; what is the probability
that the level A, will be exceeded once in the next five years?

In this case, we observe that the natural time interval is one year, and within
each year there is only one maximum flood that may or may not exceed the level Ji,.

': Therefore the series of annual floods can be modeled as a Bernoulli sequence.
Furthermore, assuming that fy is high enough that there is no likelihood of its

being exceeded more than once a year, the number of exceedances of level A,
thercfore, has a binomial distribution. On this basis, if X is the number of exceed-
ances of flood level A in the next five years, then we have

PX=1)= (T) (0.1)3(0.9) = 0.328

The probability that there will be at most one exceedance of level A, (that is,
one ar none) in the next five years is

POX S 1) =PX =0) + PX = D)
5 5
- (0) ©.1)°00.95 + (])(0.1)1(0.9)4
= 0.590 + 0,328 = 0.918
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3.2.4.  The geometric distribution
44

In a Bernoulj sequence, the number of triaks until specified ovent Oeeypg

for the first time is governed by the geomatric distribution. We observe thay
i the first oceurrence of the event is realized on the tth trial, then therg
must be no occurrence of this event in any of the prior (f — 1) trialy,
Therefore, if T is the appropriafe random variable,

P(T =1) = pg=1 (=19 (3.36)

which is known as the gesmelric distribution.

The return period. Tn a time {or space) problem that can be modeleq
as & Bernoull sequence, the mumber of time {or space) intervalg until 1}
first occurrence of an event is eatled the Jirst occurreirce time.

We observe that if the individual trials (or intervals) in the BEQUONCe ape
statistically independent, the first oceurrence time must also be the time
between any two conseeutive accurrences of the same event ; that is, the
recurrence time Is equal Lo the first oceurrence timo,

The recurrence time, therefore, in & Bernoullj sequence also has a ge.
ometrie distribution; the mean recurrence fime, which is popularly knowy,
i engincering as the (average) return period, therefore, is

e

T B(T) = 350 pg't = p(1 4 2 + 8¢2 4 -+ )

t=1

For g < 1.0, the infinite series in the parentiheses vields

ITence

T o= (3.37)
P

Fquation 3.37, therefore, means that on the average the time hetween two
consecutive occurrences of an event iy cqual to the reciproeal of the proba-
bility of the event within one time unit. 1t miust be emphasized that the
return period is only an average duration between evenls, ad should not be
eonstrued as the actual time hetween occeurrenees; the actual time is 7T
whieh is a random variable,

b

EXAMPLE 3.11

A radio {ransmission tower is designed for a “50-year wind,” that is, a wind
vc!ocity lmving a return period of 50 years,

first t

7
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what is the probability that the design wind velocity will be exceeded for the
a)'mc on the fifth year after completion of the structure? o .

Ehi<; case, the probability of encountering tt}c 50-year wind in any one year is
%?11/5.0 = 0.02. The required probability then is

P(T = 5) == (0.02)(0.98)* == 0.018
(b) What is the probability that the first such wind velocity will oceur within 5

; years after completion of the structure?

5
P(T < 5) = 3 (0.02)(0.98)*1
a1
= (.02 + 0.0196 + 0.0192 4+ 0.0188 4 0.0184
= 0.096

i is i f at least one 50-year wind

be recognized that this is the same as the event o °a
" I{Sﬂa();{ars; thusgthe desired probability may also be obtained as 1 — (0.98)* = 0.096.
» However, the above is different from the event of experiencing exactly one 50-year

o ree s . - .
_ wind in § years; the probability in this case wouid be (1) (0.02)(0.98)* == 0.092

EXAMPLE 3.12

I i i é i above the mean sea level

fishore structure is designed for a height of 8 m a .
F?ng&iZ). This height corresponds to a 10%] probability of bpmg cxce_edcd by
gcag\;vaves in a year. What is the probability that the structure will be subjected to

- waves exceeding 8 m within the return period of the design wave height?

The return peried of the design wave is

1
= e = {{) ars
T =6 = 10 ye
f i
B m
= | | 1
l [ : l I
I
- | |

Figure E3.12
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Therefore
POH > 8min 10 years) = 1 ~ (0.90) = [ — (.3487
= 0.6513

If it is assumed that, when subjected to waves exceeding the design height, therg
isa probability of 209 that the structure may be damaged, what is the Probabijj;
of damage to the structure within 3 years? y

This probability should take into consideration that there may be 0, 1, 2, or 3
exceedances in 3 years, assuming the likelihood of more than one such wave in 4
year is negligible. Furthermore, assume that structural damages from more thay
one exceedance are statistically independent. Then, according to the total prob.
ability theorem,

P (no damage in 3 years) = [.00(0.90)*
+ 0.80[3¢0.10)(0.90)?]
+ (0.80*[3¢0.10)2(0.90)]
+(0.80¥%(0.10)*

= 09412
Therefore
P (damage in 3 years) = 0.0588

Observe now that the probability of an event occurring within its re-
turn period 1 is
P (no oceurrence in ) = (1 — p)¥
where p = 1/7. Expanding the above with the binomial theorem,
My - M 7 ¢
rr =1 TP 9)

(I=p}r=1-"Tp+ ST TR 3 e IR

But for large T {and thus small P), it may be recognized that this is also
approximately cqual to e~ #'», Hence, for large 1,
P (a0 ocowrrence in 7)) o ¢ Tp = ¢! = (368
Therefore
P {oceuwrrence in T) ~ 1 — 0.368 = 0.632 for large T

In other words, for a rare event (that is, large T the probability of the
event’s oceurring within its return period is always 0.632. This result is a
useful approximation even for return periods that are not very Jong; for
wnstance, for 7' = 10 (time units),

. - 1 10
P {oceurrence in ) = 1 — (1 — 10) = (.651

which shows that the crror in the above approximation is less than 3.

e s

“ih
L Rernon - . et ) ; ’ i

» nt is governed by the negative binomdal distribution. That is, 1f T is the
spvelh 0 5 :

ot
~ trinks, then
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5. The negative binomial distribution
) that the geometrie distribution is the probahility im\\' gz;ovurn.i]?p;
e number of trizls (or time units) until the first occurrence of an ovent in
: I sequence, The time until a subsequent oceurrence of the same

yor of triaks until the kth ocourrence of the event in a serics of Bernoulli

P(Ty = 1) = (f - 1)73*@* fort =k 4+ 1,...  (3.38)

=) fort < k

If the kth occurrence is realized at the tth irial, there must be exactly

g (k — 1) ocewrrences of the event in the prior (¢ — [) trials and at the #h
- trial the event also oceurs. Thus, from the binomial law,

AN
P(Ty = 1) = (]if _ l)ph—lqt—.ﬂp

vielding therefore 1. 3.38.

EXAMPLE 3.11 (contined)

In the problem of Example 3,11, what is the probability that a second 50-year

e . . N s cf ey ?
~wind will cccur exactly on the ifth year after completion of the structure!

From Eq. 3.38, the required probability is
4
P(T, =35) = (l)(O.OZ)z(O.()S)3

= Q0013

CEXAMPLE 3.13

Suppose that a cable is composed of a number of independent wires (see Iig.

E3.i3). Occasionally the cable is subjected 1o high overloads; on sm?h occasions
- the probability that one wire will fracture is 0.05. Assume that the failure of 2 o7
T IBOTE wires during an overload is untikely. I the cable must be replaced when 3 of

“the wires have failed, determine the probability that the cable can withsland at

“least 5 overload applications before being replaced.
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rtoud

Coble

ll.ocd

Figure E3.13

This means tha( the third faiture must occur at or after the sixth overloadin

Hence, using Eq. 3.38, the required probability is &

P(Ty26) =1 — P(T, < 6)

2 3 4
1 — 05y — 053 . ;
(2) (0.05) (2) (0.05¥(0.95) (2) {0.05)%(0.95)2

=1 — 0.00i16
= (0.99884

i

3.2,6. The Poisson process and Poisson distribution
Many physical problems of interest to engineers involve the possible
oeeurrences of events at any point in time and/or space. For example,
fatigue cracks may oceur anywhere along a continuous weld; carthquakes
could strike at any time and anywhoere over a seismically active reglon; and
traflic aceidents could happen at any tine on a given highway, Coneeivably,
such space-time prohlems may he modeled also with the Bernoull sequerce,
by dividing the time op space into small intervals, and assuming that an
event will cither oceur or not eeenr (only two possibilitics) within cach
nterval, thus constituting a {rial, However, if the event can oceur at any
instant (or at any point in space), it may oceur more than onee at a given
thme or space interval, In such cases, the oceurrenees of the event may he
more appropriately modeled with a Poisson sequenee or Poisson process.
Formally, the Poisson process is based on the following assumptions.

1. An event ean oceur atl random and at any fime or any point n space.

o o ~
3.2, USEFUL PROBABILITY DISTRIBUTIONS 115

The oceurrence(s) of an event In a given tin?g (‘01' ?p&cl() interval is
ilglti(t}'J(-zlzcltztltz of that in any other 1.mnoverlg]l)plng_'g Hjt-tflHdizt(,rwg M
The probability of oceurrence '01 an event In (‘L) bl‘-n.‘d-ﬂ : IT-i(i\.-ili .]”110 »
].";:\(,;}:)(in,io]ml to Al, and ean be given by »Al, vf'hm (,.ur 1sd E} : )/;(‘)b(;b;lity
occurrence of the event (:wsumed_to be (.,:o_nstant), (.llll ) he 31 ‘o Of At}‘
of two or more occurrences in Af is negligible (of higher order: ).

he basis of these assumptions, the numb(.!r 0.[ occurrenees of ant o\fon't
UH{, lic:] Jp;ivon by the Poisson distribution; that is, if X, is the number of oc-

]Cl;;q-{fncus in time (or space) interval f, then
OO i o 3.39
P(X, =) = L ! x=0,1,2,... (3.39)

i, the averape nher of oecur-
Bere » is the mean ocewrrence rafe; that is, th_o average nui}label 8 e
. n(‘iva of the event per unit time {or space) 1ntewra.1. It fo (tmb hen the
.I:‘ " N ' . X ‘.( Ly £ (! \ .'\ v "' e\
ijﬂ( X} = wl; it can be shown that the varlance (')i X is also e oen i
) k derivation of g, 3.39 based on the preceding assumplions 13 glven in.
: "

spendix C. . | e
A]’l]‘ho similarities and differences hetween the Bernoulli sequence imd the
Poisson process may be clarified with the following illusta (Ltlu)n. Esuppo}{
sk, previous trafi srage of 60 cars per hour was ob-

rom & previous traflic count, an average of 60 cars pe ‘3

hat, from & previous : . of G0 ca " ho s b
) ; v: d to make left turns at an intersection. What s the ])1()1)(3)3111‘\’ 1l
serve ; L RV .‘ . : . R
exactly 10 ears will be making left turns in a 10-minute inter \;@21(.) o "
RaGY AR . ’ e o - ) oo

yximate soluti -ould he to divide the hour into 120 :

An approximate solution would T . ‘ ur 1 20 99 "
intervals; the probability of a left turn in any 30-sccond interval would |

AL Yy ML p

60
P o= e = (0.5
120
c turn is possible in a 30-second inter-
Then, asswming no more than one left turn is possible in a 30 5(((3 4o
L BLy L - : . 9 ‘ e ‘ N “: |
val, the problem is reduced to the binomial probability of ],()lwm
ady b - e ey . L. gt il e :"J q
trials, in which the probability of an event in each trial is 0.5; thus
rials, :

20 . .
P {10 LT in 10 minutes) = (10>(0.e))1°(0.5)20 10

Fhysieally, the solution is {L])]i)l'(,)}{.ll}'lat-(‘; because it is 1mpiiutlfy}g:;l(l:;(lg
Lh:ii ne 1'1"101'0, than one car would be making left turns dul.mg any 30-sec
inferval: obvicusly, 2 or more left turns are a(:tuallly p(_}ssﬂ.)lo. e hosen
The solution would he improved i a shorier time 11]1i(?1“f’}2..1{}\‘;f‘_ib1‘:/‘- é@:l;}(i
For example, if 10-sccond intervals were used, then p o= 60/360 = 1/6, ¢

(jo 1 10 5 G0—18
P {106 LE. In 10 minutes) = ( ; O)(()) (6)
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Further improvements can be made by taking cven shorter time
vals. In general, if the time ¢ is divided into nequal intervals, then

i ) i A\ A\ reE
P {x events in time ¢) = (H)<m) (1 - )
z/\n 7

where A is the average number of events in time . If an event can oo
any fime {as in the case of lefi-turn traffic), the proce
case with i — w ; then

inien

Cuyr at, o
88 may tend tg the

P (2 events in ¢)
- b }\. e
=006
RN FAN?! 7

= th'( j

N0t

. n (n—x41) Ac Ay AN
= Hmi .2 e st A I 1 —
I n x! 7 n)

}\ 7 )\2 }\3
(1~ = 2 5L
,,.n.l;( ??-) 4 20 31 {

Therefore the limit vieids

But

, A:(:
P (zeventsint) = = e
!

which is the Poisson distribution, Tiq. 8.39, with A = .

LEXAMPLE 3.14
Historical records of rainstorms in a (owi indicate that on the average there had

been 4 rainstorms per year over the last 20 years, Assuming that the occurrence of

rainstorms js a Poisson process, what is the probability that there would be no
rainstorms next year?

40
PLY, =0) = ai et
== 0.018
The probability that exactly 4 rainstorms will occur in the next year is given by
: 43
PLY, = 4) = K—ﬁe"“ﬂ

== 0,195
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©
[e)
o

T

II..;

N1z 34 56 789 b2 X

g s TS 1 oA
Figure E3.14 PMT of number of rainstorms in a yea:

:.. < Jast result indicates that alth'ough the a\'!erage yegrly occun"enc:::sE o‘f ;;amtst;él;s
Thf the probability of having exactly 4 rainstorms in a year is only abou o
. ;be’pg-obability of 2 or more rainstorms in the next year is

o) x*

L 40
PX, 2 2) ~—§,2 P

=1 - 0.018 — 0.074
= 0,908

- The PMT of the number of rainstorms in a year is shown graphically in Fig. E3.14.

EXAMPLE 3,15 ( Design of left-turn bay)

;. For the purpose of designing a left-turn bay at a hligl:lway it;éet;ﬁzzi;?h] éht(;alf%fé
: i : as a Poisson process, If the cycle

turns of vehicles may be modeled as a ‘ s IF the cycle time of the trafie
i for left turns) i i and the design criterion requires a t
light (for left turns) is 1 minute, an esig] o alfotnisy, woat

i i hich is the criterion in Califo ,

“that will be sufficient 96%; of the time (w !
:hould the lane distance (;,n terms of car lengths) be to allow for an average of 100

7 left turns per hour?

Solution

Let k& car lengths be the design length of the left—lm'l} lane. ;l“he n*lacanfrf]ig (t)!f l]{%tz
turns is " mi Therefor ing a l-minute cycle o ¢
turns is » = 100/60 per minute. Therefore, dmf“,g a l-minu > traffic
Iig}:]t {he? probabﬂliiy%f no more than k cars waiting for left turns must be at least
- 96%; thus }
co1 100 100760
= Y | = J e 10V = (96
P, S k) = ?2‘0 x!(GO)L
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By trial-and-error, we obtain
ik =4,
if kb = 3,

POX, < 4) = 0.968
PLX, €£3) = 091

Therefore a lefi-turn bay of 4 car lengths is sufficient to satisfy the design rejllire.
ments,

EXAMPLE 3.16

The street width at a school crosswalk is D ft, and a child crossing the Street
walks at a speed of 3.5 fifsec. In other words, it takes a child ¢ = D[3.5 see to
cross the sireet.

Suppose 60 free intervals (¢ seconds each) in an hour, on the average, are desired
at this crossing; how much average traffic volume can be allowed at this Crosswall
before crossing controts will be necessary? Assume that cars crossing the crosswalk
constitute a Poisson process.

The number of f-sec intervals in an hour is 3600/r, whereas in an interval of see
the probability of no cars passing through the crosswalk (according to Eq. 3.19) i
e il v is the average vehicular traffic per second. Therefore the maximum average
traffic volume that ¢an be allowed is such that the mean number of free intervalg

equals 60; that is,
3600
(m”; )-I—)) e =60

%@9..0_3<_3§ Py LT - 60

D

Qr

From which
o=z E{E I E._._.(){]O >i_3..,§_
D 60>
For D =25 ft,
35 3600 x 3.5
I v T

]

= 0.298 vehicles/sec

1073 vehicles/hr
For other street widths D, the corresponding traffic volumes are as follows:

D). 25 40 60 75
v(veh.fhr): 1073 522 263 173

Therefore, for various street widths, the hourly traffic volumes given above are
the maximum traffic flow that can be allowed before pedestrian crossing controls
should be installed. This example points out how critical the street width is (o the
problem of pedestrian crossings, and indicates how importatt crossing confrols
for school children must be for heavily traveled highways. This also means that the
wider streets involve much greater hazard to pedestrians. The above method has
been adopled by the Joint Committee of the Institute of Traffic Engineers and the
International Association of Chiefs of Police {Gerlough, 1955).

There are also problems in which beth the Bernoulli and Poisson models
are useful, as illustrated in the following.
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15 in. Dia.

CiI’ClE“\‘ /*3 in. Hole 3in, Hole
3‘/ ~ ' \\
/ \ .
[ \ 5in. Strip |
\ / \\ /
\\-.._ i ~ .7
x = Spaging Of Drill Hole

Figure 13.17

3 " pXAMPLE 3.17

Suppose that the soit deposit in a given region cantains 0.25 %, beulders by volume.

.'-"Wh'il js the probability that & 50-ft-deep 3-in.-diameter boring will ercounter
“poulders? Assume hypotheticatly that boulders are 12-in.-diameter spheres,

Solution

Assume that bouiders are randomly located in the soil mass, and the presence of

: poulders may be modeled by the Poisson process; the prebability of 7z boulders in a
- goil volume V is, thercfore,

s

at
PN = pn) = l((’_‘l‘ﬂ”) - 0.0035F o
!

.. where ¢ = volume of one boulder, given by

e g o T
o o= 6(5) ¢ cu ft

PN

il

) = ! (0-0025 v )”(,_o.oozsrfm/s:

Tl wje

1(0.00477 ¥yt 0.008771
.

" Next, suppose that a boulder will be encountered whenever the drilt hole touches

the circumlerence of the boulder. Then, if the borings are spaced x {t apart (see F'ig.
L ELIT), we determine the probability of an encounter {or hit) per foot of boring
© depth as follows.

For a 3-in. drill hole, any boulder with its center inside the 15-in. circle as shown

f'.j in Fig. E3.17 will be hit by the boring. Therefore, if there is one boulder in the |5-in.
= sttip, the probability of hitting it per foot of boring depth is

arca of 15-in. ¢ircle

area of 13-in. strip
(=/4)(15/12) 0982

T T asnox .«

P (hit per ft boring | 1 boulder) =

However, there may be any number of boulders in the F5-in. strip. According 1o

the Poisson madel, the prebabitity of i boulders in the strip of length x (with
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volume V = (15/12)x per ft depth) is

P (n boulders in strip) == ;]-!,-0.00477 (g\):! ex)y [-%0.00477(1%_\;)]

= %(0.00596,\‘)”6‘“0-"“5”“""

H : ¥ . RS 1 swane that
jenential distribution. We observe that (71 > f) means that no
1](3(4'111'5 in time £; henee, according to g, 3.39,
, il Ol E
etr{?l

PP, > 1) = P(X,=0) = ¢t

oo e first occrarence lime in o Poisson process. H(}\.\'tevol‘, :.siuc(‘, the m.).u
fs b w of an event in nonoverlapping {ime intervals in a Polssen process
"“rl'("]?i{i:1;(-;;13\- i)ld(‘.D(,‘l]d(‘I’lt, T, is also the recurrence time or the Hime he-
e Smﬁ\'flo ér(:).lif.(*(}uiim! oceurrences of the event.
“;{;i Jistrihution funetion of 74, therefore, is

Foy(t) = PUTy S 0) = 1~ et (3.40a)

Also, if the probability of hitting any boulder within the strip is the same gy
statistically independent of other hits, we have

982Y"
£ (no hit per ft boring i & boulders) = (1 — ?—~§-)

Then, applying the total probability theorem,

nd its density function is
4l B

S 982\
¢ = P (no hit per ft boring) = Z (1 _9 j ) -’—:—'(0.00596,0"(3-»0,uoamsm
) E .

p— e""U.U(}i-]!)ﬂ;l: . U G056 (1--0. 982/ 2)

dar _ ,
Jrt) = == =it 120 (3.408)
dt
im e""[]-UOZ‘J"ﬁ(O.QHE)

: . s ' . f s (see Fxample
and 1y is constant (independent of 1), the mean value of T 15 (see 1

3.5)

P = P (hit per ft boring) == 1 — ¢=0-00306(0.882) — | . ,~v.00385
=~ (L.00585

....... 3.41
Then, assuming the 50 ft of bering to be a Bernoulli sequence with p = 0,00585 pef My = ( )

ft of boring, we obtain the required probability
P (hit in 50 ft boring) = 1 — (1 — P = |~ (0.994]5)30
= (0.254

{See Problem 3.45 for an alternative approach to this problem.)

sich nieans that the mean recurrence time or rehllm periad {or 1 s‘s‘m?l])i{;
Poissan process is 1/p This sh.(')“.dld he (:01"1113:11‘0(1 \\'iiﬁ]]'f}](,‘ 1‘01;11111'11 1)(110( (;)'
1./‘1) for the Bernoulll model. .1'1()\\'{‘\1‘(‘1‘, for events \\'11)11- anz.l ch.‘{.!ulz‘u,.:ll;.i(;
rate #, 1/ > 14p. Po show this, we ohsn{‘vo thatinal QISsON. ;)170( {s& wi ‘
mean oeeurrence rate », the probability of an event occurring in & unit time

Before leaving the Bernoulli and Poisson models, we should point out, foi forval is p = per = p(1 — p 4 3% 4 +++); thus, for smalt », p =~ .

emphasis that in both processes the occurrences of an event between trigls
(in the case of the Bernoulli) and between intervals {in the case of the
Poisson model) are statistieally independent. More generally, the oceurrene
of a given event in one trial {or interval) may affeet the oceurrence or nor
oceurrence of the same event in subsequent trials (or intervals). In olhe
words, the probability of oecurrence of an event in & given trial may, in:
general, depend on what happened at carlier trials, and thus is a conditional
probability. If this conditional probability depends only on the immediatel;
preceding trial (or interval), the resulting model is called a Markov chail
(or Markov proeess). The clemoents and applications of Markov chaing an
developed in Vol. IT.

EXAMPLE 3.18

- Histerical records of earthquakes in San Francisco, California, show thalt durllng
he period 1836-1961 (see Benjamin, £968}, there were 16 carthquqkeg Qf =.ntc'2n31tl){
VI or more. I the occurrence of such high-intensity ca:_‘t!lquakes in this region is
gssumed Lo Tollow a Poisson process, what is the probability that such earthquakes
will occur within the next 2 years?

16
ro= —— = (),128 guake per year
" quake pery

P(Ty €2) = | — ¢ 0@ = 0226
3.2.7. The exponential distribution Fhe probabifity that no earthquake of this high intensity will occur in the next 10
The exponential distribution (also known as the negative exponential) i cars i
related to the Poisson process as follows. If events oeeur according to a

Paisson process, then the time 7y 4} the first occurrence of the event has

P(T, > 10) = 10008 o 0278

The return period of an intensity-V1 earthquake in San Francisco, according to
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Figure I£3.18
California

Eq. 3.41, therefore, is

mes 1176¥ oo g . . : H i
o?fézui:]l&e?d‘[ (i';'l ;d! thquake of at least intensity VI can be expected, on the averq
ery 7.8 years in San Francisco (assuming that the Poisson process Ifi; '

Probabilities of high-intensity carthqualkes i San Francisey
o Ll

. 1
E(Ty) == - = san = 1.8 years

r A Fa s &} STel Pyt A, 1 3 M
easonable model for the occurrence of high-intensity earthquakes in the ares)
<t g,

More general

ly, the probabilities of the dccurrences of such earthquakes within 4

given ime 7 s given by Eq. 3.40a; in the present case, this is

P(Ty 1) = 1 — 01080

which is portrayed graphically in Fig, £3.18.

1x or F

ez o

4]

Figure 3.9 PDI and CDF of the exponential distribution

et PEN

~onee

06 _ : - ‘
“eriod of the Bernoulll model {Section 3.2.3).

" whe

. Graphica
" gs shown in Iig. 3.9,

© gtarts at the origin @ =

LLogver,
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{jcular, the probability of high-intensity carthquakes occurring within the
d of 7.8 years is
P(T; £ 7.8)

1] PHI‘

i

] - o 0.128%7.8
= | — 1 = 0.632

aet, Tor a Poisson process, the probahility of an event occurring

In f

or more} within its return period is always 1 — ¢7 o ] — el
39. Compare this with the corresponding probability for large return
The exponential distribution is useful also as a general-purpose probahil-
ity punetion. In generad, its density function ean he given as
Tx(a) = e x>0 (3.42a)
= {) z <0
ve A is o constant parameter. The corresponding distribulion function is
Fy(z) =1 — ¢ x>0
= {) <0 (3.42b)

Iy, the PRI and CDI7 of the exponential funetion would appear

* Shifted exponential distribution. In Eq. 3.42 {thc density function

- (. The PDI of the exponential distribution, how-
can start ab any value; the resuiting distribution may be calied the
shifted exponential distribution, with the corresponding PDY and CDI

ty or Fy

108

¥

0

Figure 3.10  PDF and CDF of the shifted exponential distribution
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given as follows:
fx(x) = hee—w z

v
&

(3-‘13(;)
= {} x

A
&

and
Fylz) = 1 - gMae—a) T >0

= 0

(3.43y)
r<aua

Graphically, these funetions would appear as shown in Fig. 3.10,

The exponential distribution may be derived also from other considery,
tions; that is, other than as a consequence of the Poisson process, ag de.
scribed earlier, In particular, this distribution arises, in the theory of rely.
ability (see Vol. 1I), as the model for the distribution of life or time-tg,
faiture of systems under “chance” faijure condition. In this connection, th
parameter A is related to the mean life or mean time-to-failure & (T ag

1
B(T) =

See Example 3.5,

EXAMPLE 3.19

Suppose that four identical diesel engines are used as prime movers to generate
backup electrical power for the emergency control system of a nuclear power plant,
Assume that at least two units are required to supply the needed emergency power;
in other words, at least two engines must start automatically during an emergency,
otherwise this backup system will not be able to deliver the needed power. The

operational life of 15 years,

Determine the reliability of the emergency backup system for a period of two
years; that is, what is the probability that at least two of the four engines will start
automaticaily during any emergency within the first two years of the life of the sys. -

tein?

First, we observe that for earh engine, the probability that there will be no

failure to start in two years is

P(T>2) = o5 . 0875

Then, denoting N as the number of reliable engines, the reliability of the backup ;

system in two years is

PN Z22) = 24: (4) (0.875)™(0.125)4
n=2\#
= 0.993

3.2.8. The gamma distribution

If the occurrences of an event constitute a Polsson process, then the time
until the kth oceurrence of the event is described by the gamma probabilily
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dion. Let Ty dencte the time 13l the kth event; then (T < ) means
pibution. Let

: . , ) N Ser 220 fhe
dist I or more events occeur in time £ Henee, on the basis of Kq. 3.39, the
st & 01 6

gistribu

tion [unetion of 7' is

Fe ) = 3 P(X, = a)
vamfl
kL ()
AR 3.44a
=1 — E:J o t ( )

A also I serving that (T > 1) means
fquation 3.dda may be obtained also by observing that (Ty > 1)
A

Z are at most {& — 1) events occurring within {.
- there are at most (A )

The corresponding density function, therefore, is

p{ptyr1

o e vt (3441))
Il = G

1 >0

" : ey aqd TG Tl g

' he gamma distribution (with integer &) is lmown also as the B l?’”.g
o ;-gz;-q'(m!f[n-n The mean time il the ocourrence of the Lth event is
LOR(TY = ke with variance Var{(7:) = b/t

A V]

. EXAMPLE 320

Suppose that fatal accidents on a particular highway occur on the average about

s g accident this road constitutes a
o onee every 6 months, If the occurrence of accidents on this

Poisson process, the time till the first accident is given by the exponential law with

"» = 4 accident per month; that is,

1 _
fT](") == -68 ¢/

The time till the second accident is described by the gamma distribution, or

‘fi'z(r) = 'é'(é-) e*i."ﬁ

whereas the time till the third accident would be

SR VI S
ffl’a(f)zi'"é('(;) et

The foregoing density functions are shown graphically in Fig. E3.20. The corre-

s sponding mean times are 6, 12, and 18 months, respectively.

It may be recognized that the exponential and gamma d].stl11{)11“011::.(1.1(,
. i - st he geometric and negative-
the continuous analogues, respectively, of the geom(‘.tiu j;l( o ve
1 i 15tri ions, i s gensge that the ex mtial and gamma dis-
binomial distributions, in the sense that the CXPONG ntial and g " ‘(t o
tributions are related to the Poissen process in the same way tha :
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Q6
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:E_ 0.08 / ng { 1)
r/\\ . fr. (1)
= T
009 l’r \\ 3
.
If \ \.\\\\
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t, months

Figure E3.20 PDT foy thme 4l the Ist, 20d and 2 accidents on a highway

{_{{‘.0 ”(’(I]( d”d ]l(g.,'d.UV( l) omia, (i ¥ ¢ © 1 } b5
2nonm } ,1‘1i]1)“h( 18 are g 1’.(( 1 1
. H (’l * 1 ) 1] H
3{4(111(?]}( [N ( 3( o

The gamma distribution is useful also as g generai-purpose probability

dlbtll})lli“loll. For such purposes, however, it is usually given in a more
general form, o s

We reeall that .1,}1(2 generalization of the factorial to noninteger numbers i
the gamma Juniction, 7 o

I‘(f'"') = f F-le—= iy k>0 3.45
= \ : (3.4;})
which we can show that int(‘grm,ion—by—pmts Vi(*lds, fork >0
. " B - ?
I-‘(]i:) == (l\? - 1) F(l\f - ])

m vl I Y 3 K e e LT3 N 3
.J. ho(z ;,[(n ¢ ;m. 344 can be generalized for & random variable X by replac-
g (& — B bwith the gamma funetion. T i amma densiy
Pwith the g s tunetion. Thus, in general, the o 18t
s u OO ' gantima densit
funetion is e J ‘ ey

Sl = g x>0 (3.46)

(k)

where v and kb are parameters. Tig i
ang s parameters. Tts mean and varisnce remain 1/ 't
_ s nean and varance remain k/y and b/
respectively. rand b
N (J’,‘lh;l](“-mn of probahility mvolving the gamma distribution can he per-
ormed using tables of incomploete ganma function. Incomplete gamma
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mnetions are usually tabulated for the ratio (for example, Harter, 1863}

fu
f y*lev dy
(]

I, k) = i

Then, if X has a gamma distrihution we obtain fora = Oand b 2 0

i b
Pla<X <b) = i?%lj f g gy

3 Letting ¥ = »x, this integral becomes

i

1 ‘:-[vb va
TS ety Qy - f yhley dy—‘
INCATIPAS o A

e 1o, &) — I(va, k)

Pla<< X £h)

In effect, therefore, the tncomplete gamma function retio is the CDY of the
gamma distribution {with » == 1),

3.2.9, The hypergeometric distribution
The hypergeometric distribution arises when samples from e finite population
(consisting of two types of elements, for example, “good” and “bad”)
are being examined. It is the basie distribution underlying many sampling
plans used in conneetion with acceptance sampling and quality control (see
Chapter 9).

Consider a lot of N items, m of which are defective and the remaining
(N — m) are good. If a sample of = items 1s taken {at random) from this
lot, the probability of 2 defective items in the sample is given by the hyper-

geometrie distribution

=12 ..., m (3.47)

In the lot, the number of samples of size 2 is (¥); among these, there are
Fon . . A
(9 (¥ 2y samples with 2 defeetives. Henee, assuming that the samples are

equatly likely to bhe chosen, we obtain Eq. 3.47.
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EXAMPLE 3.21

A box contains 25 strain gages, and 4 of them
if6 gages were used in an experiment,
one defective gage in the experiment?

In this case, N = 25, m =4, and 5

are known Lo be defective £ages
what is the probability that theye Wag

= 6. Hence the required probability is

PX = 1) = G)_(ZSI)

ST = 0.46
G
The probability that none of the defective gages were used in the CXperimeny i

g

PXY =0) = 22 =031

()

EXAMPLE 3,22

Suppaose that 100 concrete cylinders are to be taken daily at a farge censtruction
project. To ensure Quality, the acceptance criterion requites that 10 of these cylinders
(chosen at random) must be tested and at least 9 of these must have a specified
minimum crushing strength. What can we say about the acceptance criterion....
is it too stringent?

Whether the aceeptance criterion is too stringent, or not stringent encugh,

material {o go undetected,
, if there is ¢ percent of defective concrete, then on the basis of the
specified acceptance criterion, the probability of the daily concrete mixes’ being
tejected is (denoting X as the number of defective cylinders)

P(X>l):=l-P(X_<nl)

100(1 — o) 100 &y (1001 — o)
ST I G

i

For example, if ¢ = 10¢;,

('90) (10) (90)

. 10 ] 9

EF TN e — [ —————

F (rejection) ! 00 T
o) (30)

= | - {0.3305 4 0.4080)

= (02615

hercas, if d =27,
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L) ()()
10 AL
T 100)
(10) (10
=1 — (0.8091 + 0.1818)
= 0,009

P(rejection)

rhe efore i j i is defecti e, il is

: for accordmg to these calculations, if 1054 of .the concrete 18 ve,

'k ]ry (\[\‘!’th 267 probab“lt ) to be diSCOVered Wlth the pi‘oposed accep!ance
. li e (] y

ierion, whereas if there is only 2% defectives, the likelihood that the material
o be réi i i (0.9 babiity}

. ected is almost nil (0.9% pro y) .
will bfcl(;ejjf the contract requires concrete with less than 2% d'efectlvc.s' ;hepﬂthe

;I;]tanée criterion is not stringent enough; on the other hand, if material with as
a0

i L iteri be satisfactory,
" muchas 109 defectives is acceptable, then the proposed criterion may Y

3.2.10. The beta distribution

A probability distribution appropriate for a random varia,blfa w.hos‘e vah‘lli:s
ar(? bounded, say between finite limits a and b, is the befa distribution. The
density funetion of such a distribution is

1 (2 —a)ri(h — )t
(b — @)e+r=

: 3.48
fs(®) = s asesh (348)

=0 elsewhere

in which ¢ and r are parameters of the distribution, and B(q, r) is the bele
function

1 :
Blg,7) = f 271 (1 — 2)™ da (3.49)
0
* which is refated to the gamma function as follows:
T{g)T(r) (3.494)
Bl =5+

Depending on the parameters ¢ and », the density function of lthefbeta
distribution will have different shape. ¥Figure 3.11 shows the density fune-
i : ith g = = 0.0,
tion between 2 and 12 with ¢ = 2.0 and » = 6. L
H the values of the variate are limited between 0 and 1.0 (that is, @ = 0
and b = 1.0), Eq. 3.48 becomes

: 1 - 2y 7 3.48a)
A7) = ———ar 1 —a2) o< 2< 10 (
G TP

= (} clsewhere
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fx(x}

O~

q=20 ;=860

G-

Figure 3.11 A beta distribution

which ean be ealled the standard beta distribution. Figure 3.12 shows the
standard beta density function with different values of ¢ and r.

"The probability associated with a beta distribution can be evaluated in
terms of the tncomplete belo functior, which is defined as

(3.50)

fx(x)

0 f —
0 08 16 X

Figure 3.12  Standard beta PDT

for example,
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to evaluate the probability between @ = a; and @ = @, we

pave
=1 e — @) (b — a)y!
W < X <) = dx
Pl < X < m) j:vx Blg, 1) (b — g)otrt
. Let
| _tTe
b= b a
i S0 that
' da b —
/ O £ ‘[ e ]
dy PR wnd ( ) P

' yyith this change of variable, the preceding integral can be shown fo be

P <X S w)

i (arg—-te} f (bt} (216} f{b—a)
TRy [ f yr (L — ) dy f Y (L — ) dy]
B (QJ ?') 0 0

We recognize that each of the lagt two integrals is an incomplete beta fune-
sion, Bu{g, v) and B,(g, 7), respectively, where u = {2y — a)/{b — a) and

i y = {3 — a)/ (b — @). Thus the required probability is

1 )
P(:tﬁl < X < ’Lz) — 'B-(-;?"";)' [Bu(q, ?‘) - By(q, 7‘)] (351)

: * Values of the tncomplete beta function ratio [B.{q, v} }/[B(g, r) ] have been
- tahulated; for example, by Pearson (1934), and Pearson and Johnson

(1968). Therefore, probabilities involving the heta distribution can be

. evaluated conveniently using tables of the incomplete beta function ratio.
" In fact, by virtue of Eq. 3.50, we also observe that the CDI of the standard
0 peta distribution, Eq. 8.48a, with parameters ¢ and », is given by

_ _Bw(q, )

Blzlgr) = Blg, 1)

Effectively, therefore, tables of the incomplete bete function ratio are also
~ the tables for the CDF of the standard beta distribution.

The mean and variance of the beta distribution, Eq. 3.48, are

= I ST 3.52)
px a+q+?‘(b @) (3.5
2 ar - (b — a)? (3.53)
oy G+ g+ r+1) { )
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whereas its mode is pearson and Johnson, 1968) we oblain (after suitable interpolation)

o By (3.26,4.89)
P(T <9 = 56159

By 5(4.89, 3.26)%

'.ra[io (
T =g+ *—"Ml"-:'”g* (b — (1-) :

2—qg-—r

and its coefficient of skewness =l B(4.89, 3.26)
= ] — 0.008
200 — ) (b — a) 0.992
- Kpy == (),
(g +r) (g + 71+ 2)ox (3.55)

It can be observed that the skewness of the heta distribution is POSitiye 3,211 Other distributions
when ¢ < », and negative when ¢ > r, whereas when q = 1 the distributjgy
is symmetrical (§ = 0) about the mean value, as illustrated in Iig, 3.12
Therefore, with suitable choice of the parameters g and 7, the beta distrily,
ton may be used to fit a wide variety of shapes of frequency diagrams,

The pro}:)a}:}ility distributions deseribed i?ms fa_r ATG AIMONE '1';11(1 nl().‘ls.tjxﬁ.efu%

important. However, these are not mcluswe;‘ for specific a-}."al‘Jra@ta(‘)n.s‘
ﬁné; - distributions may prove to be more appropriate and useful, including
Otil{i'lt‘i21.1‘1§L11;11‘ and urﬁi;m'm distributions. Among other widely known distri-
gzl(ms are the I~distribution, the chi—square {(x) di,?{;ribu'tion, t}.m. -
 gistribution, and the Pearson s:yste:m (Elderton, 1953)_. 11.'10 hlrst 1..1}1'(3(-% ;}.r({
mportant in statistical ana.lysns‘; for example, the t—d;.‘;smbutmn 15 ?se 1
for determining the confidenee interval (-'Jf i..iae }?(Jpl:ﬂatl()n n‘lea_n “.-lf.--l ‘un;
known variance, whereas the chi-square dlst-ljlbutl(}n 1ﬁs useful in the interva,
estimation of the pepulation variance (:‘SG(-} .(?ha,pter 5). o |
Ancther group of prebability distributions of special 1_11111)0;'1;31](:@ 0
'-enginoering design g the (1iS§1‘ibllt‘.1_(Jn ‘of (3th'f?nl() values. }thrm110-valu‘e
diQt]'il.)uiiu]}ﬁ are presented in Vol I, with special reference to problems as-
- gpciated with extreme natural hazards.

EXAMPLE 3.23

The duration of an activity in a construction project has been estimated by th
confractor to be as follows:

minimum duration = 5§ days
maximum duration 10 days

7 days

EE

expected duration ==

The contractor also estimated the coefficient of variation of the duration to be 10%
Determine the beta distribution for the duration T of the activity. :

It is obvious that @ and b will be 5 and 10 days, respectively, By equating the
expression for the mean value, we have

38 MULTIPLE RANDOM VARIABLES

The eoneept of a random variable and its pr()babili’{.yl (1ist1:il}ution can be
" extended to two or more random variables. In order to identify numerically
events that are the results of two or more physical processes, ‘the events
“in a sample space may be mapped into two (or more) chnllensmns of the
“ yeal space; implicitly this requires two or more random Varlab%es.
i Consider, for example, the rainfall intensity al & gage station and the
' resulting runoff of a river; we may use a random variable X whose values @
2170 denote the values of the measured rainfall intensity (in inches), and another
bt pning § = 3,20 and s = 4.89. The appropriate beta distribution, therefore, = random variable ¥ whose values i are the possible runoffs in the river. Ac-
has parameters g = 3.26 and r == 4.89, G
The probability that this activity will be completed within 9 days is given by

B,(3.26, 4.89)
Bulg, ) : Bi.lr, @)

54— (10 - 5) =7
g +r

giving ¢ = 2r/3. Substituting this into the expression for the variance,

gr

g +rflg+r+ 1

(10 — 3)* = (0.1 x 7»?

: . . 1 . " -‘ o .
© *Tables of the incomplete beta funetion ratio are usually given for ¢ > r. For g < »,
the ratio is

P(T L9 =

B(3.36, 4.89) oz (r, )
with & = (9 — 5)/(10 — 5) = 0.8. From tables of the incomplete beta function . Blg,n) Blr, q)
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cordingly, (X =, ¥ = ) and (X < z, ¥ < y) are joint events* defingg
by values of the random variables in the zy-space. Obviously, this Notioy
can be extended to multiple random variables.

3.3.1.  Joint and conditional probability distributions

Since values of X and ¥ represent events, there are probabilities associateg
with any pair of values ¢ and y; the probabilities for all possible pairg of 5
and y may be described with the joint distribution Junction of the randay,
variables X and Y, defined as

Fer(e,y) = P(X <2, Y <y (3.56)

which is the cumulative probability of the joint oceurrences of the evenyg
identified by X € 2z and ¥ < y. In order to comply with the axioms of
probability, the joint distribution function must satisfy the following:

(a) Fxy(—o, —w) = 0, Fey(wo, ©) = 1.0
(b) Fxy(—~w,y) = 0; Fxy(w,y) = Fy(y)
Fxy(z, — =) =0; Fxy(z, @) = Fx(z)

(e) Fxylz, y) is nonnegative, and a nondeereasing function
of z and y

If the random variables X and ¥ are discrete, the probability distribution

may also be described with the joint probability mass function (PMF)

H
which is simply

Py, y) =P (X =Y =y) (3.57)
Then the distribution function becomes

Fxy{x,y) = >

twi Sz, i <)
which is simply the sum of probabilities associated with all point pairs
(2, y;) in the subset {z; € 7, y; < vl
The probability of (X = x) may depend on the values of Y, or vice

versa; accordingly, by virtue of Eq. 2.11, we have the conditional probability
mass function

px.v (%5, ;) (3.58)

Pxiv(@ |y} =P(X = 2]V = y) = X r(@,9) (3.59)
y{y)

* We will use the notation:
K=,V =y =[N =20 =)
XV <y =[X <)n(¥ € y)
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i 7,],-(';,') # (). Similarly,

Py

px (0

(3.59a)
t)

prix(y [ ) =

The PAMIT of the individual random variables may be obtained from the

- ;int PALL; applying the theorem of total probability, Fq. 2.19, we obtain
‘!! ¢ - - ¥ I =

the marginal PME of X as

pr(a) = X PX = 2|V = y) P(Y = g)

all ¥y
= 3 PX =2, ¥ = y)
al gy
= 2 () (3.60)
all g7
© Py the same token, i
() = 2 proaleny) (3.60a)

ull xy
1 the random variables X and ¥ oare gtatisticeatly independent (meaning
that the events X = z and ¥ = y are statistically independent),
priv(e Ly = px{a) and prix(y {2} = pr(y)

© Henee, g, 3.57 hecomos

Pyl v = py e} prly) (3.61)

. EXAMPLE 3.24

Suppose that, from a survey of construction labor, the work duration (in number

- of hours) per day and the average productivity (in terms of percent efficiency)

Duration , hours

Figure E3.24a  Joint PMI px v(x, 1)
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- . . L. . . itions F for the average productivity of an
were recorded as shown below, For simplicity, the work duration is recorded g [3.244 is shown: the conditional PMF fo ze | ¥

6, 8, 10, and 12 hr, whereas the average productivity is categorized into 509, -
70%,, and 90%. Pata show the following results. s

- CFig
éi.]hr {%ay ,prix( | 8)

Duration and productivity No. of Relative Prxiis
{x. 1) observations  frequencies g -
Copglyt 0.475 05y 2

6, 50 2 0,014 ?} 0,345 Rl

6, 70 5 0.036 o o

6, 90 [0 0.072 -ML 0-'i° or 2

8, 50 5 0.036 - ' [

8, 70 30 0.216 I I R e ° woRo® e
8, 90 25 0.180 Figure E3.24¢ Marginal  PMF Figure E3.24d Conditional PMHE
10, 50 8 0.058 i prix(y}8)
10, 70 25 0.180 pr()
10, 90 11 0.079 _ e g
12, 50 10 0.072 If the random variables X and Y are con?;muous, the probabﬂ:ty d:stlx i
12,79 6 0.043 pution may also be described with the joint probability density function
12, 90 Total T’s% 0.014 '.(PDF); which may be defined as

Hal = 1]

raved mrani S frr@y) dedy = Ple < X Sotdny <YV <y+dy)  (362)
These may be portrayed graphically as shown in Fig. E3.24a,

The marginal PME for X, the distribution of work duration, is Then
Dy (X)) = oy, v () & v \
[*\( ) (1.:;-‘---’:%770.9(1)[ AW i FX.}’(x) y) = f ] fX,Y(u, y) de du (3()3)
and would appear as shown in Fig, E3.24h. For example, the ordinaie at X = § js e
e as Pai8) = 0.036 + 0216 + 0.180 = 0.432 Conversely, if the partial derivatives exist,

v (8) = 0.0 2 . = 0.

3 . . p
Similarly, the marginal PMF for ¥, representing the distribution of productivity, fyvlz, y) = GMLE)“ (3.64)
is shown in Fig. £3.24¢, - dr oy
If the work duration per day is § hr, the probability that the average productivily
will be 909, is given by the conditional probability of £q. 3.594 as Also,
a _ Py B,9000 b
prxeOn | == Pla<XSho<¥dy= [ ] fovlun)dodu (365)
0.180 _ -
0432 - which is the volume under the surface f(z, y). as sho“.'n in Iig. .3.13. .
= 0.417 Analogous to Eq. 3.59, the conditional density function of X given Y, is
fX.Y(xx ?l) (3 66)
Az |y) =" .
Pyix] fXI}( |J) fY(y)
2'5— &, Therefore, in general,
144 &
as}- N [ Sy (@ y) = fxv(z | y) fr(y)
oz~ 5 l 3 or (8.67)
Ol -
© sla - EIE Th Few(a, y) = frix(y | @) fx (=)
owoever, if X and ¥ oare statistically independent, that is, fxir(z | ¥) =
Figure E3.24b Marginal PMTF py(a) However, if X and ¥ are statistically indey )
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Surface f (x,y) 11
heytx,y? urface 1 (x,y
—fY(y)
3 X

Figure 3.13  Joint PDF of X and ¥V P lo)=hrea

Surface = fle(x. y)
Jx(a) and fyix(y | =) = fy(y), then

e, y) = fx(2) friy) (3.68)

Applying the total probability theorem, we oblain the marginal densy
Sunetions,

: {,{b}=Areg
¥ v

Jele) = f w,f.\’u’(.’l’ ) dy cogre 3.4 Joint and marginal PDY of continuous random variables X and ¥
- lé Y N} L A -

= [ ey (z, ) dy (3.69)

imi g ion ¢ e written also as
and, similarly, “a function can be also @

1 ITjix — :"_\') !
oy e — T e ;
fyvalxn Nom oy ] [ 2 Gy V2may V1 - p?

Ny oy = ployfo)r mﬂ
BX; [ 5{ ”’I"\ 1 ~— P2

Trly) = fm Jxv{x, y) do (3.70)

—

The characteristics of a joint density funetion for two random variables

Y ooy i " Yo a1 a o BRIl T e '."l‘il")"iv(v] N '1"-"17 i . 3 " H
X and Y, and the associated marginal densities, are portrayed in Iig, 3.14. “Then, in view of Eq. 3.67, we see that the conditional density function of ¥ given
: L 3

Y = x5 | . _.1_{-)? o ployfo ) x — fx.‘\'}}z]
PrisO |0 = Ze=tpees | 73 oy VT - g

EXAMPLE 3.25

An example of a joint density function of two continuous random variables X :
and Y is the bivariate normal density function given by

. 1 -1 X iy 2
cr ) = e —. :
foar) 2oy o VL = gt ) [?-(1 - PE){( Ty )

-2 Xty Yoy + ¥ — ity 2
P (J"‘\- Ty Ty

=00 < x <00 —00 <y < 00

~whereas the marginal density function of X is

!
fx() = o exp

oth of which are Gaussian. In particular, the conditional density function is
ormat with mean vatue

E(ﬂ X o=x) = gy — plopfo)x — )

wnd variance

. . . . .. . 4 e Y o 21 — 2
in which p is the correlation coefficient between X and ¥ (see Section 3.3.2). Such Var (¥ 1 X = x) = o] o)
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Similarly, it can be shown ihat

SVPT oS I U RN DS ) b il Sl < CATAA .l 01 &
R T AR S e S ]

and

. 1 Liy — pny &
i .l) R s BR[|
fro V2way ! [ 2( ay ):I

3.3.2. Covarianece and correlation

The joint second moment of X and V is

E(XY) ﬂf / oy fxv{x, y) dedy (3.71)

and if X and Y are statistically independent, Eq. 3.71 becomes {by virtue
of Hq. 3.68)

E(XY) = fwf ayfx (@) v () de dy

—oz Y

< [t an [ upty dy = BGO B 710)
o o
The joint sceond moment about the means py and uy is the covariance of X
and ¥; that is,

Cov(X, V) = BL{X — ux} (¥ — py) ]
E(XY) ~ E(X) E(Y) (3.72)

In view of Iiq. 3.71la, Cov(X, V) = 0if X and Y are statisti :ally inde-
pendent.

The physical significance of the covariance can be inferred from 1.
3.72. 1f the Cov(X, Y) is large and positive, the values of X and ¥ tend to
be both large or both small relative to their respective means, whereas If the
Cov{X, V) is lurge and negative, the values of X tend to e large when the
values of ¥ are small, and viee versa, relative to their respective means;
and if the Cov(X, ¥) is small or zero, there is little or no (linear) relation-
ship between the values of X and Y (or if a strong refationship exists, it is
nonlinear},

Therefore, the Cov(X, ¥} is a measure of the degree of (lin ar) nter-
relationship between the variates X and ¥. For this purpose, however, it is
preferable to use the normalized covariance or correlation coefflctent, which
is defined as

I

------------ (3.73)
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- The vatues of p range betweenr —1 and +-1; that, is,

=1 < p L+l (3.74)

whieh we can verify as follows.
According to Sehwarg’s inequality (Hardy, Littlewood, Polya, 1959),

[ f - [ ) (& = )y = wrdfxr(z, ) do cl'y}

< fm .[ (@ = wx) v (e y) dody - [ f (y — wy ) fx oy (2, ) de dy

—u Y —oel

- gut the left-hand side is the [Cov(X, ¥) 7, whereas

]

L

ol

[ 1 =it deas = [ o= wotete) do

-+ and

] o 0
f f (v — w)ifx vz, y) dedy = f (¥ — ur)¥r(y) dy = oy’
eV —en -
Henee we have

[Cov(X, T < oxley? {3.75)
or

Pt < 1.0 {3.75a)}

thus verifying 15q. 3.74.

When p = 1.0, X and ¥ are linearly related as shown in Figs. 3.15a
and 3.150, respectively, whereas, when p = 0, values of X and ¥ may ap-
pear as in Iig. 3.15¢, For intermediate values of p, values of X and Y would
appear as in Iig. 3.15d—the “scatter” decreases as p increases. However, we
alzo observe from Figs. 3.15¢ and 3.15f that when the relation between X
and ¥ iz nonlinear, p = 0 e¢ven when there is a perfect functional relation-
ship between the variables,

Therefore the magnitude of the correlation coefficient p (hetween 0 and
1) i a measure of the degree of linear interrelationship between two

~svariables,

It is also important to point out that although p is & measure of the de-
gree of (linear) relationship between two variables, this does not neces-
sarily imply a causal effect between the variables, Two variables X and ¥
may both depend on another variable (or variables), in which case there
will be a strong correlation between the values of X and ¥, but the values
of one variable may have no direct effect on the values of the other. Tror
example, the flood flow of a river and the productivity of a construetion
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2 I R
11,

Figure I3.26

The shear force @ and bending moment A at the fixed support are

Q = 5 4 5

M = aS; + 2aS,

nich are also random variables with means and variances as {ollows (see Section

y ¥
0 ' 0 X
{a} p=+LO (b) p=-i0
. . 1y
o g i
e e e PAISAD
0 ] 0 X
(¢) p=0 (d) O<p <l
VA . yﬂ
L3
L]
L]
L]
bl S ¢ % 0 | e 70
N . R
a L] &
[ e L
L]
Y % ) .
(6) p=0 (f) p=0
Figure 3,15 Significance of corrvelation coefficient p. {a) p = +1.0. (b} p = —1.0.

=0 @0 <p<l0 (£p=0 (Pp =0

crew may be highly correlated because hoth depend on the weather condi-
tion; however, the flood flow may have no direet influence on the produc-
tivity of the construction erew, or vice versa. Consider also the following
problem from mechanics.

EXAMPLE 3.26

A cantilever beam is subjected to two random loads $; and 8, (Fig. £3.26), which
are statistically independent with means and standard deviations gy, 0, and g, 6
respectively,

‘HQ
Har

= gt My

an, -+ 2(}‘”2

]
O'(})

2
Oar

(}12 + 522
@*(o? + 40,%)

“ g%y 1hus

Although §; and 8, arc statistically independent, @ and M will be correlated;

‘this correlation can be evaluated as follows;

E(QM) = E[(S; + S,as; + 2a5,)]
= qlf (S + 3af(8,5) + 2aE (S

bul FG8,S.) = E(SDECS,) by Bq. 3.71a, and (S = a)% + 1%, F{SH = o +

FOM)Y = ale* + %) + 2a(m? + 1,2 + 3apgp,
= a(e)® 4 20,5 -+ potiy

_Thcrefm‘c

Cov (), M) = E(QM) — wpirsr
a(o® 4 20,%)

il

.and the corresponding correlation coefficient is

Cov (Q, M) ay% 4 20,2
rorr = - e .
o 99 Yy V(o? + o?)o® + 40,7)
~Hence, il ¢, = «,,
3 3

indicating strong correlation between the shear and moment at the support. This
correlation arises because @ and M are functions of the same loads S; and S,;

however, there is no causal relation between @ and M.

33,3, Conditional mean and variance®

A there are two random variables, the mean and variance of one varighlie
‘may depend on the value of the other varigble; in such cases we have

* FI - . . . . . N 3
S Thissection may be skipped over on first reading; 1he matorial is nol neded for under-

Standing the remaining chiaplers of the hook.
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conditional means and condilional varianees. Indee d, it would be me
to speak of conditional moments of any order,
IT X and ¥ are diserete random varisbles with joint PME py (2

dlllhp;fn;

the conditional mean of X, given ¥ = Y, 18 ¥,
pxy = BX Y =y) = 2 apyir(e|y) (3.76)
all o

and il X and Y are statistically independent, that is, py)y (2 | o)
then

= bx (),
EXY =y) = EB(X) (3.7
From Eqs. 3.59 and 3.60, we can write

E(X) = 2 apx(e) = 3 3 apyr(a, y

all x all y all =

2o 2 s o ()

sl gy all x

Thus, substituting Fq. 3.76,
E(X) = 2, BIX1Y = y) pr(p) (3.78)

all g

IT X and ¥ are continuous random variables, the conditional mean of X
given ¥ = gy, becomes

x|y = f afxpy(z | y) de (3.764)

10

and the relationship in Eq. 3.78 becomes

wx = [ wxufr(y) dy (3.780)

—

We should emphasize that  whereas E{X | v
F{X | Y) is a random variable whose mean is

EVLEX YYD = 20 B(X[Y = g)py(y)

all

2o 2o anxp (x| Wy (y)

allb »  all

= 3 apy(a) = E(X) (3.79)

all @

= ) Is a constant,

The subseript ¥ on B emphasizes that the expeetation is with respeet to ¥,
The conditional variance of X, given ¥, is

Var(X | ¥ =) = B[(X ~ aype)? | ¥ = 4] (3.80)

" Recognizing that the second term is zero, and Fv (ux,y)
CFg. 374, we have
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Thus, {0 discrete X and Y,

Var(X [V = y) = 2. (@ — wxpr)parv(e | y) (3.80a)
all =
and for gontinuous X and ¥,
VXY =9) = [ - wo)nlely) de (3.800)

— o
The total (unconditional) variance can be expanded as follows:

Var(X} = E[(X — u)?] = Ev{E[(X ~ pxiy)?| V]|

Crhe last equality Tollows from K. 8.79. This last term, however, is

..;EY{E[(X' — uxir )] Y =

EviBI{X — py+ px— puxiv)? | Y3
Ey{BEL(X — puo? | Y]

+ 2E[(X ~ ) (ux — wxyy) | Y]

A+ [axy — wg? | Y

Il

= uy according to

Var(X) = Ey[Var(X'| ¥} 7 4 Vary[E{(X | V)] (3.81)

- Equation 3.81 says that the total variance is equal to the mean value of the
“gonditional vaviance plug the variance of the conditional mean.

284, CONCLUDING REMARKS

The principal concepts introduced in this chapter include the netions of a
“random variable and its associated probability distribution, Several of the
“more useful prohability distribution funetions and their properties are also

deseribed and developed. However, the list of distributions is incomplete;

& number of other mmportant distributions were omitted including the
= several extreme-value distributions that will be presented in Vel 11

The complete deseription of a random variable would be accomplished

=0 by epecilving iis probability distribution (including the values of its param-

efers). However, a random variable may also be deseribed approximately

with its mean-value and variance {or standard deviation); physieally,
Ahese main deseriptors of a random variable represent its eentral value and
~measure of dispersion. For two (or more) random variables, the main de-

seriptors must include also the covariance or correlation coefficient between
the variables.
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Thus far (and this will continue through Chapier 4), we L
dealing with idealized theoretical models, In particular, we have
tacitly at least, that the probability distribution of a r
or its main deseriptors, are known. In a real problem, of course, 1}
be estimated and inferred or derived on the basis of real-world (.
conditions. The concepts and methods for these purposes are the
of Chapters 5 to &,

PROBLEMS

Section 3.1

3.1

3.2

fylx}

ANALYTICAL MOBELS OF RANDOM PHENOMEN.4

ave he
fissulned
andom Vilriay),

1650 1y BS;

A contractor is submitting bids to 3 jobs, 4, B, and C. The probabilije
that he will win each of the three jobs are P(A) = 0.5, P(B) = 0.8, and P(C) 2
0.2, respectively. Assume events 4, B, C are statistically indepcndeilt
Let X be the total number of jobs the contracior will win. :
(a) What are the possible values of X7 Compute and plot the probabilj,
mass function (PMF) of the random variable X.
(b) Plot the distribution function of X.
(¢) Determine P(X < 2).  Aus. 0.92.
(d) Determine P(0 < X < 2). Ans. 0.84.
The settlement of a structure has the probability density function shawn j;
Fig. P3.2. :
(a) What is the probability that the settfement is less than 2 cm?
(b) What is the probability that the settlement is between 2 and 4 cm?
(©) If the setilement is observed to be more than 2 cm, what is the probabi[il):z
that it will be less than 4 cm?

The bearing capacity of the soil under a cofumn-footing foundation is knows
to vary between 6 and 15 kips/sq ft. Its probability density within this range
is given as

. 1 x
Sx(x) = ﬁ(l - TS) 6 <x <15

=) elsewhere

If the column js designed to carry a load of 7.5 kips/sq ft, what is the prob-
ability of failure of the foundation?

£

! . a1 -
!
|

[ S

Figure P3.2

4 [ 12 16
%, sattlement in cm. t, sec.

Figure P3.4
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The time duration of a force acting on a structure has been found (o be a
yandom variable having the c.iensity function shown in Fig, P3.4.. )

() Determine the appropriate values of ¢ and & i"o1: 1l.he density function,

(b Calculate the mean m}cll median for_ the variable T

(¢} Calculate the probability that T will be equal to or greater than 6 sec,

that is P(T 2 6).
A conslruction project consisted of building a major bridge across a river
and a road linking it to a city (Fig. P3.54). The contractual time for the entire
sroject is 15 months. . . .

The contractor knows that the construction of the road will require between
12 and 18 months, and the bridge could take between 10 :dnd ?O months.
The probability density functions of the respective comp]g:tlon times, hov‘vn
ever, are uniform for the road, and (riangular f(_)r the bridge, as §hown in
Figs. P3.5h and ¢. Construction of the road and bridge can ]Jr()cc.ed'smwl'ianc-
ously, and the completion of the bridge and the road are statistically inde-
pendent. » ' . o

Determine the probability of completing the project within the contractual
time.

‘Figure P3.5b

e
- e
X
-~ Road
- Bridge
Figure P3.5a
1yind
17 ] 1, months o ) 20 1, months

Figure P3.5¢

3.6 1n order to repair the cracks that may exist in a 10-ft weld, a nondesiructive

testing (NDT) device is used first (o detect the location of cracks. Because
cracks may exist in various shapes and sizes, the probability that a crack
will be detected by the NDT device is only 0.8. Assume that the events of
each erack being detected are statistically independent.
(a) 1T there are two cracks in the weld, what is the probability that they
would not be defected?
(b) The actual number of cracks N in the weld is not known. However, its
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oyt

0.6
ti1}

B
t, Waitlng Timo, hours
n, numbar of cracks

Figure P3.6 Figure P3.8 DI of waiting (iy,

PME is given as in Fig. P3.6. What is the probability that the NDT
device will fail to detect any crack in this weld?

{c} Determine the mean, variance, and cocfficient of variation of N b
on the PMF given in Fig. P3.6,

(d) If the device Tails to detect any crack in the weld, whal is the pmbabi]i[y
that the weld is flawless (that is, no crack at al)?

ased

3.7 Suppose the duration (in months) of a construction job can be modeled as 4
continuous random variable 7 whose cumulative distribution function (CDFy
is given by

Fp(t) = 12— 2¢ + 1 1 <r <2
={ <1
=} r>2

(a} Determine the corresponding densitly function fi-{f).

{b) Compute P(T > 1.5).
The waiting time at airport A of city B has a density function shown in Fig.
P3.8. The waiting time is measured from the time a traveler enters the terminal
to the time when he is airborne.

The travel time from hotel C to the airport depends on the transportation
mode and may be assumed to be 0.75, 1.00, and 1.25 hours corresponding to
travel by rapid transit, taxi, and limousine, respectively. The probability
of a traveler’s taking each mode of transportation is as follows:

3.8

P {rapid transit) == 0.3
P {taxi) == (),4
£ (limousine} == 0.3

(a) What is the prebability that a traveler will be airborne in at most 3 hr
after feaving hotel €7 Ans. 0.436,

(b} Given that the traveler is airborne within 3 hr, what is the probability
that he took the limousine?  Ans. 0.234,

3.9 Two reservoirs are focated upstreant of a town; the waler is held back by two
dams A and 5. Dam B is 40 m high. (See Fig, P3.94.) During a strong-motion
earthquake, dam A4 will suffer damage and water will flow downsiream
into the lower reservoir. Depending on the amount of water in the upper

e p‘,lj)

0

3,10

fc,(“

Figure P3.96
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i A
8 )
o i Town
4C0m
Figure P3.9a
Tylxl X = Increase In Woter Lavel
In Resorvoir 8
¥y = Woter Laval in @ |
Resarvarr B i
or
f
\
|
I
03 1
|
l | |
28 3 ¥ (m) 0 5 v 15 20  lml

Figure P3.9¢

reservoir when such an earthquake occurs, the lower reservoir water may or
may not overflow dam B. Suppose that the water lcvgf at }'cservoir B, during
an carthquake, is either 25 m or 35 m, as shown in Fig. P3.95; and the
increase in the elevation ol water level in B caused by the additional water
from reservoir A is a continuous random variable with the probability
densily function given in Fig, 3 .9¢.
(a) Determine the value of « in Fig. P3.9¢. .
{b) What is the probability of overflow at B during a strong-motion
earthquake? .
(c) If there were no overflow al B during an carthguake, what is the prob-
ability that the original water level in reservoir B is 25 m?
A streteh ol an intercity freeway has 3 one-way lanes and 2 convertible
Janes. The capacity of the highway when the 3 lanes are used is 100 cars per
minute. lts capacity when 5 lanes are used is 140 cars per minute,

fcal c)

l
| ,

(e} Normat Traffic

Figure P3.10

5 150 Q 100
Cors per min, Cars per min

{b} Heavy Tratfic

PDF of traffic volume, («) Normal traflic. () Heavy traflic
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Three lanes of the freeway is used when there is normal traffic wheregg
five lanes will be used whenever there is heavy traffic volume, The dens'a“
function of the traffic volumes in each case are shown in Figs. P3.10q andl;)

On a given day, if normal traffic is twice as likely as heavy traffic, whgg ;.
the probability that the capacity of the freeway will be surpassed? N

311 A traveler _going from city 4 to city C must pass through city B (Fig. P3 11
The quantities T} and T, are the times of travel from city A4 to city B aa X
from city Bto city C, in hours, respectively, which are statistically indepeng nd
random variables, The probability mass functions of Tyand Tyareas showne H\
Figs. P3.11b and ¢. The time required to go through city B may be cons‘én
ered a deterministic quantity equal to | hr. e

(8) Calculate the mean, the variance, the standard deviation, and the b

coefficient of variation of Ty,

(b) Determine the PMF of the tofal time of travel from city A4 to city ¢ '.

Sketch your results graphicaily.
{c) What is the probability that the travel time from city A to city € wy)
be at least 8 hr?

B
A if T2 <
Figure P3.11a
Py, (1) nTzUz)
0.5
0.4
0.3
025 | 6.25
0.2
o
0 i 2 3 R hours 0 4 5 & tp, hours

Figure P3.11b Figure P3.11c

312 ;hc };%urly volume of traffic for a proposed highway is distributed as in
ig. 12,
(a) The traffic engineer may design the highway capacity equal to the
following,
(i) The mode of X,
(ii) The mean of X.
(iti}) The median of X.
(iv} x g9, the 90-percentile value, which is defined as Fy(x 59 = 0.90.
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Determine the design capacity of the highway and the corresponding
probability of exceedance (that is, capacity is less than traflic volume)
for each of the four cases.

{1b) Assume that the actual capacily of the highway after it is built is cither
300 or 350 vehicles per hr with relative likelihoods of 1 to 4, What is the
p]‘()babilily that the capacity will be exceeded?

flxd

i
i
0 1(;0 2(!)0 3&0 400

%, number of vehlcles

Figure P3.12  PDY of howly traffic volume

: 3,13 The laterai resistance of a small building frame is random with the density

function

" 3 g " .
Jn(r) = %(1 — 10)(20 — ) 10 <r <20

= ( elsewhere

{(a} Plot the density function f5,(r) and the cumulative distribution function
Frln.
() Determine;
(i) Mcan value of R,
(ii} Median of R,
(iii) Mode of R. ~
(iv) Standard deviation of R.  Ans. V'3,
(v) Coeflicient of variation of K. Ans, 0.149.
(vi) Skewness coeflicient.  Ans. 0.
14 The delay time of a construction project is described with a random variable X,
suppose that X is a discrete variate with prebability mass function given in
Table P.3.144. The penaltly for late completion of the project depends on the

Table P3.14a, PMF of X Table P3.14), Penalty function

x; x; gl
in days palxd (days) ($100,000)
i 0.5 i 5
2 0.3 2 6
3 .1 3 7
4 0.1 4 7
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number of days of defay; that is, penalty = g(x,). The penaity funcs

given in Table P3.146 in units of $100,000, ! PRI Tinction i
(a) Caleulate the mean penalty for this project.  Ans. 3570,000,
{(b) Calculate the standard deviation of the penalty,  Ans. $78,000.

Section 3.2

3.15 If the annual precipitation X in a city is a normal variate with a mean of 505,
and a coeflicient of variation of 0.2, determine the following. .,
(a) The standard deviation of X,
(b} P(X < 30).
() PLY > 60),
(dy P40 < X < 55).
{e) Probability that X is within 5 in. from the mean annual precipitation

(f) The value x, such that the probability of the annual precipitation ex.

ceeding x, is only 1/4 that of not exceeding x,.
316 The present air traffic volume at an airport (number of landings and iakeoﬁ‘s)

during the peak hour is a normal variate with a mean of 200 and a standarg
$ ard.

deviation ol 60 airplanes (IFig, P3.16),

(a) If the present runway capacity {for tandings and takeoffs) is 350 p!anes':

per hr, what is currently the daily probability of air traffic congesijor
Assume there is one peak hour daily.  Ans. 0.0062.

{b) If no zg!diliona] airppris or expansion s built, what would bhe the:
probability of congestion 10 years hence? Assume that the mean traffic:

vohune is increasing linearly at 10 of current volume per year, and th
coeflicient of variation remains the same.  Ans. 0.662.
H the projected growth is correct, what airport capacity will be requireg:

(c

S

10 years from now to maintain the present service condition {that g,

the same probability of congestion as now)?  Ans. 700.

g | |
© w ! " !
= o ~Medan Growth Curve
- B
i =z | e |
z |
% | :
3 | |
[ .
0 ¢ -

Time, yeass
Figure P3.16

3.17 The moment capacity M for the cantilever beam shown in Fig. P3.17 is:
canslant throughout the entire span, Because of uncertainties in material ;

strength, M is assumed (o be Gaussian with mean 50 kip-ft and coefficien

of variation 20%. Failure oceurs if the moment cipacity is exceeded anywhere :

in the beam.

(a) If only a concentrated load 3 Kips is applied af the free end, what is the

probability that the beam will fail?  Auy. 0.623.

(b) If only a uniform load of 0.5 kips/ft is applicd on the entire beam, what

is the probubility that the beant will fail?  Aas. 0.066.
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(¢) In rare cases, the beam may be subjected to the combination of the
concentrated load and the uniform load; what will be the reliability
(probability of ne failure} of the beam when this case occurs? Ans. 0.308.

(dy Suppose that the beam had survived under the concentrated foad. What
will be the probability that it will survive under the combined loads?
Ang. 0.316.

(c) Suppose that a reliabiiity fevel of 99.59% is desired, and the beam is
subjected only to the uniform load w across the span. What will be the
maximum allowable w?  Aus. G.484 kip/fi.

A portion of an activity network is shown in Fig. P3.18; an arrow indicates

the starting and ending of an activity. Activity (' can start only after comple-

tion of both activities A4 and B, whereas activity D can start only after com-
plelion of C. A, B, C, D are statistically independent activities.

The scheduled starting dates are as follows, and an activity cannot start
carfier than its scheduled date. (For simplicity, assume all months have

30 days.)

Activities A & B:
Activity C
Aclivity D

May 1

June |

August |

The times required to complete cach activity are Gaussian random variables

as foliows,
Activity A:
Activity B3;
Activity "
Activity D:

N(25 days, 5 days)
N(26 days, 4 days)
N{48 days, 12 days)
N{40 days, 8 days)

Assume that both activities 4 and 8 started on schedule, that is, on May 1.

() Determine the probability that activity € will not start on schedule,
Ans, 1.292,

(b)Y The availability of labor is such that unless C is started on schedule
the necessary work force wilt be diverted to another project and thus
will be unavailable for this activity lor at least 90 days. Whal is the
probability that activity D will start on schedule?  Ans, 0.596,

A contractor estimates that the expected time for the completion of job A4
is 30 days. Because of uncertainties that exist in the Jabor market, materials
supply, bad weather conditions, and so on, he is not sure that he will tinish
the job in exactly 30 days. However, he is 9072 confident that the job will



154 ANALYTICAL MODELS OF RANDOM PHENOMEN A

be completed within 40 days. Let X denote the number of d
complete job 4.

(&) Assume X to be a Gaussian random variable; determine
and also the probability that X wiil be Jess than 50, based on th
information.  Ans, 0.9948.

Recall that a Gaussian random variable ranges from —w g
Thus X may take on negative values that are physicatly impos :Fcr“
,_Delermine the probability of such an occurrence. Based on thig 1:Mble
is the assumption of the normal distribution for X rcasonahié‘? esul
0.00006, e
Let us now assume that X has a log-normal distribution with (he 5
expected value and variance as those in the normal dislribmi(;
part {a). Determine the parameters 2 and {, and ]

qYS requirey 1

ing
& gi\'e

(b)

()

also the probabj;

that X will be less than 50. Compuare this with the result of AL (4 :
< £l

Ans, 0.9817,

320 From records of repairs of construction equipments, it is found that y
. Tailure-free operation time (that is, time between breakdowns) of an e ;']c
ment may be modeled with a log-normal variate, with a mean of 6 m(()]nllllp
and a standard deviation of 1.5 months. As the engineer in charge of mg; >
taining the operational condition of a ffeet of construction equipment vou
wish to have at least a 90% P i
operational at any time.
{a) How often should each piece of equipment be scheduled for m
nance?  Ans. 4.22 months.
If a particular piece of equipment is still in good operating conditioy
at the time it is scheduled for maintenance, what is the probability tha
It can operate for at least another month without its regular mainte.
nance? Ans. .749.
A system of storm sewers is proposed for a city. In order (o evaluate (he
effectiveness of the sewer system in preventing flooding of the streets, the
following information has been gathered. Figure P3.21a shows the pmbeifn’lit
mass Vl“unction for the number of occurrences of rainstorm ecach year in thg
city. Figure P3.205 shows the distribution of the maximum runofl rate in cach
storm, which is log-normal with a median of 7 cfs (cubic feet{sec) and COV
of 15%. From hydrautic analysis, the proposed sewer system is shown l'g) be

dife.

(b)

3.21

Pyin) fpif)

" Lagnormaol
edion = ¥
c.ov. B %

a3

1 z 3
Nomber Of Roinstorms in A Year

Figure P3.21a

Moximum Runoff Rete, cfs

Iigure P3.210

dng &
1o

a ! O -
robability that a piece of equipment wil]ybe '
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adequate Tor any storm with runofl rate less than 8 c¢fs. Assume that the
maximum runofl rates belween storms are statistically independent,
(z) What is the mean and variance of the number of rainstorms in a year
for the city?
() What is the probability of flooding during a rainstorm?  Ans, 0,787,
(¢) What is the probability of flooding in & year?  Ans, 0./89.
The depth to which a pile can be driven without hitting the rock stratum is
denoted as Jf {Fig. P3.22a). For a certain construction site, suppose that this
depth has a log-normatl distribution (¥ig. P3.22b) with mean of 30 fi and
cOv of 20%,. In order to provide satisfactory support, a pile should be
embedded 11U into the rock stratum.
(a) What is the probability that a pile of length 40 ft will not anchor
satisfactorily in rock?  Aas, 0.10.
(1) Suppose a 40-M pile has beer driven 39 ft into the ground and rock has
not yet been encountered. What is the probability that an additional
5 £t of pile welded to the original length witl be adequate to anchor this
pile satisfactorily inrock?  Ans. 0.71.

322

geround Surface fH(h)

L.ognormal

b, depth in ft
(h)

Figure P3.22a Figure P3.220

3,23 A water disiribution subsystem consists of pipes 4B, BC, and AC as shown
in Fig. P3.23. Because of differences in elevation and in hydraulic head loss
in the pipes and associated uncertainties, the capacity of cach pipe (which
is defined as the maximum rate of flow) is given as follows, in cfs (cubic
feet/sec):
AB: capacity is Gaussian with mean 5, COV 1074

BC: capacity is log-normal with median 5, COV 107
AC: capacity equal to 8 or 9 with equal likelihood

(1) Determine the probability that the capacity of the branch ABC will
Ang. 0.963,

exceed 4 cfs,

Figure P3.23
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3.25

3.26
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(b) Determine the probability that the total capacity of the subsystem sho
above will exceed 13 cfs.  Ans. 0.607. (Hint. Use cond Wi
ability.)

A construction project is at present 30 days away from the scheduled COoMmyp)

fion .datie.{ Depending on the weather condition in the next month, {he ti,ﬁ

required for the remaining construction wilt have log-normal distribug ¢
- ¢ K l

foilows: & Putions g

itional Prok,

Weather Time required (days)
Good po= 25, g =4
Bad Median = 30, o =6

Based on prefiminary investigation, the weather in the next month would
equally likely to be good or bad, ¢

{a) What is the probability that there will be a delay in the completion g
the projecl?  Ans, 0.306.

(b) A weather specialist is hired to obtain additional information on the
weather condition for the next month. However, the specialist is 1n0f
perfect in his prediction. In general, his predictions are correct 90 ¢
of the time, that is P(PG | G} = 0.9 and P(PB| B) = 0.9, where PGD
P denote the event that he predicts pood and bad weather, 1'cspccliveiy1
and G, 8 denote the event that the weather is actually good and bad)
respectively. Suppose that the speciatist predicted good weather for the
next month. What is the updated probability that there will be a delay
in the completion of the project?  Ans. 0.150,

A compacted subgrade is required Lo have a specified density of 110 per
{pounds per cu ft), U will be acceptable i 4 out of 5 cored samples have at
least the specified density.

() Assuming each sample has a probability of 0.80 of meeting the required
density, what is the probability that the subgrade will be acceptable?
Ans. 0.737,

(b) What should the probability of each sample be in order to achieve a 80%
probability of an acceptable subgrade?

The following is the 20-year record of the annual maximum wind velocity V¥
in town A (in kilometers per hour, kph),

Year V (kph) Year V (kph)
1950 78.2 1960 78.4
1951 75.8 1961 T76.4
1952 81.8 1962 72.9
1953 85.2 1963 76.0
1954 75.9 1964 79.3
1955 78.2 1965 7.4
1936 72.3 1966 77.1
1957 69.3 1967 80.8
1958 76.1 1968 70.6
1959 74.8 1969 73.5
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(a) Based on this record, estimate the probability that V will exceed 80 kph
in any given year.

(b} What is the probability that in the next 10 years there will be exactly 3
years with annual maximum wind velocity exceeding 80 kph?

(c) If a temporary structure is designed to resist a maximum wind velocity
of 80 kph, what is the probability that this design wind velocity will
be exceeded during the structure’s lifetime of 3 years?

(dy How would the answer in part (c} change, if the design wind velocity is
increased to 85 kph?

The sewers in a city are designed for a rainfall having a return period of 10

ears.
(a) What is the probability that the sewers will be flooded for the first time

in the third year after completion of construction?

{b) What is the probability of flooding within the first 3 years?

(c) What is the probability of flooding in 3 of the first 5 years?

(dy What is the prebability of only one flood within 3 years?

A preliminary planning study on the design of a bridge over a river recom-
mended a permissible probability of 30 %, of the bridge being inundated by
flood in the next 25 years.

{a) If p denotes the probability that the design flood level for the bridge
will be exceeded in 1 year, what should the value of p be to satisfy the
design criterion given above 7 [Hint. For small value of x, (1 — x)* ==
I — nx]

(b) What is the return period of this design flood?  Ans. 83.4 years.
Figure P3.29 shows a 40-ft soil stratum where boulders are randomly depos-
ited. Piles are designed to be driven to rock. For simplicity, assume that the
stratum can be divided into 4 independent layers of 10ft each, that the
probability of hitting a boulder within each 10-it layer is 0.02, and that the
probability of hitting 2 or more boulders within each layer is negligible.

(a)} What is the probability that a pile will be successfully driven to rock

without hitting any boulder?

(b) What is the probability that it will hit at most 1 boulder on ils way to
rock?

(c} What is the probability that a pile will hit the first boulder in fayer 7

(d) Suppose the foundation of a small building requires a group of 4 such
piles driven to rock. What is the probability that no boulders will be

i1
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Figure P3.29
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encounlcrc_:(l in driving the piles? Assume that the pi]e-driving condiy
between piles are statistically independent, O
3.30 Ti]g use[‘u_{ life per mile of pavement (Fig, P3.30) is described as a log-nop
variate wlth a median of 3 years and COV of 509 Life means the ug;}gal
time untif repair is required. Assume that the lves between any 2 mil;y fe
pavement are statistically independent. )
(a) What is the probability that a mile of pavement will require repair | '
year? ha
(b Supp{_)se that the design life is specified to be the S-percentile life x
(that is, the pavement life will be less than the design life with probay )
59%). Determine the design life,
() Whal is lh(? probabitity that there will be no repairs required i the
first year of a 4-mile streieh of pavement? ¢
@ Wi1al is the probability that 2 of (he 4 miles wilf need repairs jn
first year?
(e) What is the probability of repairs of the 4-mile stretch in the firsg 3
years of use? o
() What is the probability that the first repair of the 4-mile st
oceur in the second year? (Note that the condition in the sec
Is not independent of the first year.) Ans. 0.543.

o0s
z]ny
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eich wi)
ond yegy
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q miles 1

“§.0gnormal
Medfan = 3 yoors t ik
coov = 0,50 uh?

Density

- 2Y S

] -~

o

Life per mile, yeors

Figure P3.30 Figure P3.31

3.31 The maximum annual flood level of a river is denoled by H (in melers).
Assume that the prebability density of H is described by the triangular
distribution shown in Fig. P3.31.

(a) Determine the flood height Ay, which has a mean recurrence interval
(return period) of 20 years,

{b) What is the probability that during the next 20 years the river height H
will exceed fy, at least once?

(c) What is the probability that during the next § years the value of fiy
will be exceeded exactly once?

(d} What is the probability that f,, witl be exceeded al most twice during
the next 5 years? '

332 For the river in Problem 3,31, a control dam will be constructed according to

- Figure P3.34
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the following specification. The height of the dam will be so selected that in the

pext 3 years this height will be safe against floods with a probability of 94 %,

(a) Delermine the required return period of the design flood.  Ans. 50 years,

(b) Determine the design height that will meet this requirement. Auns.
6.8 m.

33 For quality control purposes, 3 specimens in the form of G-in.-diameter
" eylinders are taken at random from a batch of conerete, and each specimen
is tested for its compressive strength. A specimen will pass the strength test if
it survives an axial compressive Joad of 11 kips. From previous record,
the contractor concludes that the histogram of crushing strength of similar
concrete specimens can be satisfactorily modeled by a normal distribution
with mean 14.68 kips and standard deviation 2.1 kips, that is, N(14.68, 2.1).

{(a) What is the probability that a specimen picked at random will pass the
test?

(b) 1f the specification requires alt 3 specimens 1o pass the test for the
balch of concrete to be acceptable, what is the probability that a batch
of concrete prepared by this contractor will be rejected ?

(c) The contractor prepares a batch of concrete each day. What is the
probability that at most one batch of concrete will be rejected.for a
2-day period?

(d) Repeal part (b}, il the specification is relaxed so that one failure out of
the 3 specimens tested s allowed.

{e) The contractor may use a better grade of concrete mix, and together
with better workmanship and supervision, he can improve the mean
crushing strength of concrete specimen 1o 16,5 kip, while reducing the
coeflicient of variation to 90%;, of its previous value. What is the prob-
ability for a batch to be acceptable now? Assume that the crushing
strengih of the concrele is a normal variate, and no failures are allowed
in the 3 specimens lested.  Ans. 0.986.

334 Three flood control dikes are built to prevent fiooding of the low plain as

shown in Fig. P3.34. The dikes are designed as follows,

(i) Design fiood of Dike s the 20-year flood of river A,

(i) Design flood of Dike 11 is the 10-year flood of river A.

(i15) Design flood of Dike 111 is the 25-year flood of river 8.
Assume that the floods in rivers A and £ are statistically independent; also,
the failures of dikes T and 11 are statistically independent.

(a) Within a year, determine the probability of fcoding of the low plain

caused by river 4 only.  Ans. 0145,

Low Mg

Rive:r 8

Figure P3.35
&
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(b) What is the probability of flooding of the low plain area iy ,
Ans, 0.179. yeu

(€} What is the probability of ne flooding of the low Pl
years?  Ans, 0.454.

3.35 A county is bounded by streams 4 and B (Fig. P3.35). From flow rec
annual maximum flow in 4 may be modeled by a normal distributj
mean 1000 ¢fs and COV 209, whereas that in B may be modeled »
normal distribution with mean 800 cfs and COV 20 Yo The capacit;
(defined as the maximum flow that can be carried without overﬂow'in )‘)tl(!
A and B are 1200 and 1000 ¢fs, respectively. Assume the stream fiows %, ¢
and B are statistically independent. ]

(a) What is the probability that stream A will overflow in a year?

(b)Y What is the probability that stream B will overflow in a year?

(c} What is the probability that the county will be flooded in a year?

(d) Wha is the probability that the county will be free of floods in the nex
3 years?

{e} If it is decided to reduce the probability of overflow in stream 4 fo 5¢
a year by enlarging 1he stream bed at critical locations, what shauld g
the new capacity of A7

(T} Suppose that, because of error in prediction, the capacity of Sirean
B may not be [000 cfs, and there is a 20% chance that the capacity my
be 1100 cfs. in such a case, what is the probability that stream B wil
overflow in a year?

A contractor owns 5 frucks for use in his construction jobs. HMe decides to
institute a new program of truck replacement, using the following procedure:
(i) Any truck that has had more than T major breakdown on the job
within a year will be evaluated to determine how many miles it gets per
galion of gas.
i) Any truck given this special evaluation will be replaced if it gets less than
% miles per galton.
From prior experience, the contractor knows two facts with a high degree
of confidence: (i) for each truck, the mean rate of major breakdowns is once
every 0.8 year; and (ii} the gasoline consumption of trucks that have more
than | major breakdown is a normal variate N(10, 2,5) in miles per gatlon,
(a) What is the probability that a given truck will have more than 1 break-
down within a year?
{b) What is the probability that a truck petting a special evaluation will
fail to meet the mites-per-gallon test {see part (i) above]?
(¢) What is the probability that a given truck will be replaced within a
year?
(d) What is the probability that the contractor will replace exactly | truck
within a year?

337
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338 On the average 2 damaging earthquakes occur in a certain country every

- 5 ycars. Assume the occurrence of earthquakes is a Poisson process in time,

For this country, complete the following.

(1) Determine the probability of getting I damaging earthquake in 3 years.
(b) Determine the probability of no earthquakes in'3 years,

(¢} What is the probability of having at most 2 earthquakes in one year?
(d) What is the probability of having at feast | earthquake in 5 years?

(a) The occurrences of flood may be modeled by a Poisson process. I the
mean occurrence rate of floods for a certain region A is once every 8
years, determine the probability of ne floods in a 10-year period; of |
flood; of more than 3 floods.

(b) A structure is located in region 4, The probability that it will be inundated,
when a flood occurs, is 0.05. Compute the probability that the structure
will survive if there are no floods; if there is | flood; if there are # floods.
Assume statistical independence between floods.

{¢) Determine the probability that the structure will survive over the 10-year
period.  Ans. 0.939.

3.36 A cofferdam is 1o be built around a proposed bridge pier tocation so (hy
construction of the pier may be carried out “dry” (sec Fig. P3.36),

The beight of the cofferdam should protect the site from overflow of wave
walter during the construction period with a reliability of 95%,. The distriby.
fion of the monthly maximum wave height is Gaussian N(5,2) ft above measn
sea level.

(@) 11 the construction wilf take 4 months, what should be the design heigh
ol the cofferdam (above mean sea level)? Assume hai monthly max
mum wave heights are statistically independent.  Ans. 9.46 1.

(b} If the time of construction can be shortened by T month with an addi-
tionat cost of $600, and the cost of constructing the cofferdam is
$2000 per ft (above mean sea level), should the contractor take this

alternative? Assume that the same risk of overflow of wave water still
applies.

.40 Traflic on a one-way slreet thatl feads 1o a toll bridge is to be studied. The
“ yolume of the traffic is found (o be 120 vehicles per hw on the average and
out of which £ are passenger cars and 1, are trucks. The toll at the bridge is
$0.50 per car and $2 per truck. Assume that the arrivals of vehicles constitule a
Poisson process.
(a) What is the probabitity that in a period of | minute, more than 3
vehicles will arrive at the toll bridge? Aus. 0.1429.
{b}y What is the expected total amount of (o} collected al the bridge ina
period of 3 he?

/« Bridge Pier

d
Cotfer um\ - Mean Sea Leve!
}” /
—ail

4l Strikes among construction workers occur according 1o the Poisson process;
on the average there is ane strike every 3 years. The average duration of a
strike is 15 days, and the corresponding standard deviation is 5 days,

I it costs (in terms of tosses) a contractor $10,000 per day of strike, answer
the foltowing.

Figure P3.36
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(1) What would be the expected toss to the contractor during a striles

(b} 1f the strike duration is a normat variate, what is the probabilit ;
contraclor may tose in excess of $20,000 during a strike?

(¢} Inajob that will take 2 years o complete, what would be the conty
expected loss from possibie strikes? (Remember that the oceur
strikes is a Poisson process.)  Aas, $/00,000.

3.42 The service stations along a highway are located according 1o a Poijgg
process with an average of [ service station in 10 miles. Because of d)On
shortage, there is a probability of 0.2 that a service station would not h-1ds
gasoline available. Assume that the availabilities of gasoline at ¢ o
service stations are statistically independent.

(a) What is the probability that there is at most 1 service station in (he
15 miles of highway?

(b} What is the probability that none of the next 3 stations have pasod
for sale?

(¢) A driver on this highway notices that the fuel gauge in his car reggy
empty; from experience he knows that he can go another |5 mi]esb
What is the probability that he will be stranded on the highway wétho@
gasoline?

aciopy
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3.43  Express rapid-transit trains run between two points (for example, betweey
downtown terminal and airport). Suppose that the PASSENgers arriving
the terminal and bound for the airport (Fig. P3.43) constitute g Poisson
process with an average rate of 1.5 passengers per minute, If the czlpacily
of the train is 100 passengers, how often should trains leave the lerminal o
that the probability of overcrowding is no more than 1097 ‘

(1} Formulate the problem exact] y.

{b) Determine an approximate selution by assuming that the number of
airport-bound passengers is Gaussian with the same mean and standard
deviation as the preceding Poisson distribution.

(c) if the traing depart from the ferminal according to the schedule of
part (b), what is the probability that in 5 consecutive departures 1 wii]
be overcrowded? Assume statistical independence.

3.44 A large radio antenna system consisting of a dish mounted on a truss (sce
Fig. P3.44) is designed against wind load. Since damaging wind storms rarely
occur, their occurrences may be modeled by a Poisson process. Local
weather records show that during the past 50 years only 10 damaging wind
storms have been reported. Assume that if damaging wind storm (or storms)
oceur in this period, the probabilities that the dish and the truss will he
damaged in a storm are 0.2 and 0.05, respectively, and that damage to the

/—Anlennu Dish

e —
e Wind
T To Aleport e — .
Terminal
/
T \Passangers

Figure P3.143 Figure P3.144
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gish and fruss are statistically independent. Determine the probabitities,
during the next {0 years, for the {ollowing events,

() There witl be more than 2 damaging wind storms,

(b) The antenna system will be damaged, assuming the occurrence of at

most 2 damaging storms.

(¢) The antenna system wilt be damaged.
..45 The problem in Example 3.17 may be solved by assuming that whenever the
center of a 12-in~diameter boulder is inside the volume of a cylinder with
15 in. diameter and 50 ft depth, it will be hit by the 3-in. drili hole. On this
pasis and the assumption that the occurrence of boulders in the soil mass
conslitules a Poisson process, develop the corresponding sofution procedure
for determining the probability of the 3-in. drilf hole hitting boulders in a
50-ft depth boring,

3,46 buppose ihat the hurricane record for the last 10 years at a certain coastal city
" in Texas is as follows.

Year No. of hurricanes
1961 [
1962 Q
1963 0
1964 2
1965 I
1966 0
1967 0
1968 2
1969 1
1970 1

The occurrence of hurricanes can be described by a Peisson process. The
maximum wind speed ol hurricanes usually shows considerable fluctuation.
Suppose that those recorded at this city can be fitted satisfactorily by a log-
normal distribution with mean = 100 fi/sec and standard deviation =
20 f1fsec.

(a) Based on the available data, find the probability that there will be at
least | hurricane in this city in the next 2 years.  Ans. 0.795.

{b) Il a structure in this city is designed for a wind speed of 130 ft/sec, what
is the probability that the structure will be damaged (design wind speed
exceeded) by the next hurricane?  Ans. 0.08.

(c) What is the probability that there will be al most 2 hurricanes in the
next 2 years, and that no structure will be damaged during this period?
Ans. .718.

347 Toernadoes may be divided into two types, namely I (strong) and 3 (weak).
From 18 years of record in a city, the number of type T and type H tornadoes
are 9 and 54, respectively, The occurrences of cach type of tornado are
assumed to be statistically independent and constitute a Poisson process.

(1) What is the probability that there will be exactly 2 tornadoes in the city
next year?



3.48  Figure P3.48a shows a record of the carthquake occurrences in a county wi
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(b) Assurning thal exactly 2 tornadoes actually occurred, and 1 of ()
known 1o be of type I, what is the probability that the other
type 17
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a brick masonry tower is to be built to last for 20 years, The tower can W‘u;]e-.

stand an earthquake whose magnitude is 5 or lower. However, if quakes wipy,

magnitude more than 5 (defined as damaging quake) occur, there is iikeli1

hood that the tower may fail. The engineer estimated that the pmbztbili[‘

of failure of the tower depends on the number of damaging quakes
during its fetime, which is described in Fig. P3.485.

(@) What is the probability that the tower will be subjected to less thyy 3.

damaging guakes during its lifetime? Assume earthquake OCCUrTenge!

may be modeled by a Poisson process. S

(b) Determine the probability that the tower will not be destroyed by car(h.

quakes within its useful life, ;

(c) Besides earthquakes, the tower may also be subjected 10 the altagk:

of tornadoes whose occurrence may be modeled by a Poisson progeg

wilh mean recurrence time of 200 years. 11" a tornado hits the fower, the

tower will be destroyed. Assume that failures caused by earthquakeg

and tornadoes are statistically independent. What is the probability

that the tower will fail by these natural hazards within its usclut fifg)

OCCLii‘l‘ing:

351
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deviation of 150,000 gpd. The daily water supply is cither 600,000 or 750,000
gallons, with probabilities 0.7 and 0.3, respectively.

{a} What is the probability of water shortage in any given day?

(1) Assuming that the conditions between any conseculive days are statistic-
ally independent, what is the probability of shortage in any given week?

(¢} On the average, how often would water shortage occur? I the occur-
rence of water shortage is a Poisson process, what would then be the
probability of shortage in a week?

(d) M the cily engincer wants the probability of shortage to be no more
than 1% in any given day, how much water supply is required?

gteel construction work on multistory buildings is a petentially hazardous
cceupation. A building contractor whe is building a skyscraper at a steady
pace finds that in spite of a strong emphasis on safety measures, he has been
expericncing accidents among his large group of steel workers; on the average,
about 1 accident occurs every 6 months,

(2) Assuming that the occurrence of a specific aceident is not influenced
by any previous accident, find the probability that there will be (exactly)
| accident in the next 4 months.

(b) What is the probability of at least [ accident in the next 4 months?

(¢) What is the mean number of accidents that the contractor can expect
in a year? What is the standard deviation for the number of accidents
during a period of | yecar?

(d) I the contractor can go through a year without an accident among his

% 7 2 stee] construction workers, he will qualify for a safety award. What is

§ . 6 5 the probability of his receiving this award next year?

o o B 506 5 z (e) If the contractor's work is to continue at the sume pace over the next

8 I I g 5 years, what is the probability that he will win the safety award twice
1\9’2. I & during this 5-year peried?

BO-Year Record

Figure P3.48a

n, fo. ol damoging quakos

Figure P3.480

3,52 Two industrial plants are focated along a stream (see Fig. P3.52). The solid
and liquid wastes that are disposed {rom the plants into the stream are called
eflluents, In order to control the quality of the effluent from cach ptant, there
is an effluent standard established for each plant. Assume that each day, the

349 A skyscraper is Jocated in a region where earthquakes and strong winds effluent of each plant may exceed this eflluent standard with probability
may occur. From past record, the mean rate of occurrence of a large earth- p = 0.2, during the actual operation. A good measure of the stream quality
quake that may cause damage to the building is 1 in 50 years, whereus at A as a result of the pollution from these effluent wastes is given by the
that for strong wind is 1 in 25 years. The occurrences of earthquake and dissolved oxygen concentration (DO} at that location. Assume that the DO
strong wind may be modeled as independent Poisson processes. Assume has @ log-normal distribution with the following medians and COV (in mg/l).
that during a strong earthquake, the probability of damage to the buiiding
is 0.1, whereas the corresponding probability of damage under strong wind Median COV
is 0.05. The damages caused by earthquake and wind may be assumed (o be
independent events. N ) o

(a) What is the probability that the skyscraper will be subjected (o strong 2 g% 8§5 ‘\:::2:: gﬁ}h ?{Efl’lll‘i?elsl(i; i::iext?edilm_dindd'd
winds but not large ear(hquakes in a 10-year period? Also, determine * 6 018 when b l)il fyonts ¢ L,;glg “(T'( ‘:j“
the probability of the structure subjected to both large carthquakes ’ <16 when both elllucnts cxceca standal
and strong winds in (he 10-year period.
() \(V)l?_dl]l;: the probabilify that the building will be damaged in the 10-year (a) What is the probability that the DO concentration at A will be less than
pertod: ) 2 mg/fl in any given day?
3.50 The daily water consumption ol a cily may be assumed (o be a Gaussian {b) What is the probability that the DO concentration at A will be less than

random variable with a mean of 500,000 gal/day (gpd), and a standard 2 mg/l in two consecutive days?
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A e
m
/ sired ®Plan| 11

Figure P3.52

{c} It has been proposed as a stream standard that the probability or Do

concentration at A falling below 2 mg/l in a day should not exéeeq 0
What shoufd be the allowable maximum value of P (hbe probabirs .
exceeding the eAluent standard for each plant)? Y “'f

3.53 T_hc daily concentration of a certain pollutant in a stream has the eXponeng;
distribution shown in Fig. P3.53. e

(a) I the mean daily concentration of the potlutant i 2 mg/ 108 Jie
determine the constand ¢ in the exponential distribution, ¢
(b) Suppose that the probiem of pellution will occur if the concent

problem resulting from this pollutant in a single day?
What is the return period (in days) associated wiith this Concentratig
!cvcl of 6 mg/10M liter? Assume that the concentration of the [potlur .
is statistically independent between days.  Ans. 20 days,

(c

St

(d) What is the probability that (his potiutant will cause a pollution problen

al most once in the next 3 days?  Ans, 0,993,
{e} I instead of the exponential distribution, the daily poliutant concenyr

probability of pollution in a day in this case?  Ans. 0,022,

f (x)

~CX
fx(x Y=ce " ¢=constan?

V

0 2 4 & 8
x, concentration {my /IOal )

Figure P3.533

3.54  The interarrival times of vehicles on a road follows an exponential distribu-

tion with a mean of 15 sec. A gap of 20 sec is required for a car from a side:

street 10 cross the road or to join the traflic.
(a) What is the proportion of gaps that are less than 20 sec?
() What is the average (mean) inferarrival Gme Tor alf the gaps that are
longer than 20 sec? .

o ration of:
the poliutant exceeds 6 mg/10% liter. What is the probubility of poEIu{imi

ant’

A

tion s Gaussian with the same mean and variance, what would be the:
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(c) In 1 hr, what is the expected total time occupied by gaps thal are less
than 20 sec? (Hint. What is the expected number of pgaps that are
less than 20 sec in 1 hr?)

The accurrences of tornadoes in a midwestern county may be modeled by a
Poisson process with a mean occurrence rate of 2.5 tornadoces per year.

(a) What is the probabitity that the recurrence time between tornadoes will
be longer than 8 months?

(b} Derive the distribution of the time il the occurrence of the second
tornade. On the basis of this distribution, determine ihe probability
that a second lornado will occur within a given year.

The time of operation of a construction equipment until breakdown follows
an exponential disteibution with a mean of 24 months. The present inspection
yrogranm is scheduled at every § months,

(2) What is the probability that an equipment will need repair at the first
scheduted inspection date?

(v) 1f an equipment has not broken dewn by the first scheduled inspection
date, what is the probability that it will be operational beyond the next
scheduled inspection date?

(¢} The company owns 5 pieces of a certain type of equipment; assuming
that the service lives of equipments are statisticaily independent,
determine the probability that at most 1 picce of equipment will need
repair at the scheduled inspection date,

(&) 1Mt is desired to limit the probability of repair at each scheduled inspec-
tion date Lo not more than 109, what shoutd be the inspection interval?
The conditions of part (¢) remains valid.

The cost for the facilities ta release and refill water for a nuvigation lock in a
canal increases with decreasing time required for each cycle of operation.
For purposes of design, it has been observed that the time of arrival of boats
follows an exponential distribution with a mean inferarrival time of 0.5 hr.
Assume that the navigation lock is to be designed so that 80 %, of the incoming
{raffic can pass through the lock without waiting,

(a} What should be the design time of cach eycle of operation?  Ans, 0.11 hr.

{b) What is the probability that of 4 successive arrivals, none of theny have
to wait at the lock?  Ans. (.41,

(¢} Suppose that one boat leaves town A every 8 hr, and has o go through
the lTock to reach its destination. What is the probability that at least ]
ol the bouts feaving town A in a 24-hr day has to wait at the lock?
Ans, 0,484,

A pipe carrying water is supported on short concrete piers that are spaced
20 fapart as shown in Fig. P3.584¢.The pipe is saddled on the piers as shown
in Fig. P3.58h. When subjected 1o lateral carthguake motions, there is a
horizontal inertia foree that will tend o dislodge the pipe from its supports.
The maximum lateraf inertia force £ at cach pier may be estimated as

where
w == the weight of the pipe and water for a 20- section;
& == acceleration of gravity = 32.2 fifsec?;

a = maximum horizontal earthquake acceleration.
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20 14 20 f1

i

- 3ft Do, Pipe

—~Pier Supports

{a) {b)
Figure P'3.58a Figure P35,

The pipe has a diameter of 4 ft, so that the total weight per foot of p; e.

and contents is 800 Ib per 1. Assume that the maximum acceleration during 4
strong-motion carthquake is a log-normal variate with a mean of 0‘4(,’,
and a COV of 254,

(a) What is the probability that during such an carthguake, the pipe will

be dislodged rom a picr support (by rolling out of the saddle)?

(b) 1f there are 3 piers supporting the pipe over a ravine, what is the prob-
ability that the pipe will not be dislodged anywhere? Assume the
conditions between supports to be statistically independent.

(c} I the cccurrence of strong-motion earthgquakes is a Poisson process,
and such earthquukes are expected (on the average) once every 3 years;
whal is the probability that the pipe may be dislodged from its supports
over a period of 10 vears?

3.53% Ten percent of the 200 tendons required 1o prestress a nuclear reacior structure
have been corroded during the last vear. Suppose that 10 tendons were
selected at random and inspected for corrosion; what is the probability
that none of the tendons inspected show signs of corrosion? What is the

probability that there will be at least one corroded tendon among those’

inspected?

3.60 The il in an carth embankment is compacted 1o a specified CBR (California
Bearing Ratio). The entire embankment can be divided into 100 sections,
of which 10 do not meet the required CBR.

(a) Suppose that § sections are sefected at random and tested for their CBR,
and acceptance here requires all § sections 1o meet the CBR limil,
What is the probability that the compaction of the embankment will be
accepted?

(b If, instead of 5, 10 sections will be inspected and acceptance requires all
10 sections meeting the CBR Himit. What is the probability of acceptance
now?

Section 3.3

3.61  Both cast and west bound rush-hour traffic on a (oil bridge are counted it
10-sec intervals. The following table shows the number of observations for

where X
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each combination of east and west bound traffic counts:

Number of westbound vehicles

»
o
3
g 0 i 2 3 4
o
o 2 S 15 40 58
é«' [ | [ iI5 35 62
S 2 18 15 28 30 30
[='8
= 3 45 32 25 1S 10
&
& 4 G5 58 35 5 3

Total number of observations = 6635

Let X = number of eastbound vehicles in a 10-sec interval,

Y = pnumber of westbound vehicles in a 10-sec interval.

(a) Compute and plot the joint probability mass function of X and Y.

(b) Determine the marginal PM¥F of X,

{c) I there are 3 castbound vehicles on the bridge in a 10-sec interval,
determine the PMF of westbound vehicles in the same interval,

() In a 10-sec interval, what is the probability that 4 vehicles are going
eust if there are also 4 vehicles going west al the same time?

{¢) Determine the covariance Cov (X, Y), and evaluate the corresponding
correlation coefficient between X and Y,

.62 The joint density function of the material and labor cost of a construction
project is modeled as follows:

f\ l'(-""‘s )’) oy 2}.() w(2 ) X, ¥ >0
=0 elsewhere
material cost in $100,000
¥ = labor cost in $100,000

() What is the probability that the material and kbor costs of the next
construction project will be less than $100,000 and $200,000, respec-
tively?

(b) Determine the marginal density function of material cost in a project,

(¢) Determine the marginal density function of labor cost in a project.

{d} Are the material and labor costs in the construction project statistically
independent? Why?

{¢y If it is known that the cost of material in the project is $200,000, what
is the probability that its labar cost will exceed $200,0007
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Joreas, for continuous X, 18g. 4.3 yields
“vl, LR

i
Iyliyy = f felx) do = [ Iyfa) de {4.5)
V— o
e =p1an )
s the latter ease (that is, X continuous}, \\:e 1'{5(9.“;}11 from ealeulus that by
Ii 1&11;4‘ a change of the variable of integration, Tq. 4.5 becomes
mak ”

4. Functions of Random

° oo v . d{f"‘l]
Variables o) = [ it de = [ p) Sy

i

1y (g g
4.1, INTRODUCTION o .

o nereaces wAil e When 4 reases with inereasing
This assumes that ¥ increases with @ When y decreases with increasing a,

Ingineering problems often involve the evaluation of funetional relationg :
R = 1 = Pl then

between a dependent variable and one or more basie (independent) vayi.
ables. If any of the basic variables are random, the dependent variable
will ikewise be random; its probability distribution, ag well as its moments,
will be funetionally related to and may be derived from those of the basie
random variables.

Tr(y) = — fx(g7) s

However, in this latter case (dg1/dy) is negative. Properly then the de-
rived densily function is
4.2, DERIVED PROBABILITY DISTRIBUTIONS ' dgt |

| (4.6)

fr(y) = fx(g™Y)

4.2.1.  Funetion of single random variable
Consider first the funetion of a single random variable,
Y o= g(X) {4.1)

Fhis means that when ¥ o= g, ¥ = 2 = gt (y) where g1 is the inverse
funetion of ¢. [Assume for the moment that g(x) is a monotonically in-
creasing function of z with a unique inverse g (y).] Thus

EXAMPLE 4.1

Suppose that X is a normal variate with parameters g and o. Determine the
density function of ¥ = (X — p)fo.

dx . . )
he inverse function is x = ¢y 4 u, and Fy = o. Thus Eq. 4.6 yields

g oy =
P(Y =y) = P(X =a) = PLX = ()] frlyy =g oxp ‘
That is, the PMF of ¥ is _ 1 o
Vg

pr(y) = px[o{y}]) (4.2)

it f efore Y is a standar rmal variate wit sity Tunction N{O, 1).
Also, it follows that Therefore ¥ is a standard normal varfate with densi y Tunctic 0, 1)

PY Sy) = PIX < gy

CEXAMPLE 4.2

HXhasa log-normal distribution with parameters 4 and ¢, what is the distribu-
jon of ¥ = In X7 In this case

i ] 1 T flnx — 2\2
1500 = e <" )

Thus

Fy(y) = Fx[g{y)]
Henee, for diserete X,

Fy(y) = 2. () (4.4—)'

all wy <yt

170



172 FUNCTIONS OF RANDOM VARIABLES

and

PR T dx — ¥
X o= g7 w2

dy

Therefore, according to Eq. 4.0,

1 B 1y — 4 2 .
fy(y) = Vom g o EXP[“E(T) :l-e‘
Mw“:l_Tﬁ‘ex)u—_i 'y_.;» 9
v P TR

Hence the distribution of ¥'is normal with mean value 2 and standard deviation ¢,
that is, E(In X) = 2, Var (n X) = /2 ’

We ohserve that the inverse funetion ¢ () may not he singlo-valiyed.

. . . . ) . Ty

that is, there may be multiple values of @ for a given value of y. In syely
ases, 1 g71(y) = @y, 2, -, 2y, we have

¥ =y) = U (X = ay)

{=1
Hence, for diserete X,
k
pr(y) = 22 px(xi) (4.7)
Fe]
whereas, if X is continuous,
I3 dﬂn}
Ny = 2 hx(g™) ‘ ------ ’ (4.8}
o dy

in which ¢, == @, is the ith root of ¢ (y).

EXAMPLE 4.3
The strain energy in a linearly elastic bar subjected 1o a force S is given by
L
U = 82
2AE
where
L = length of the bar
A == cross-sectional area of the bar,
E = modulus of clasticity of the elastic materiai

Then, if §is a standard normal variate N(0, 1), the density function of U is oblained
on the basis of Eq. 4.8 as follows,
Rewriting
U = o5
where ¢ = L{2ZAE, we have

4.2. DERIVED PROBABILITY DISTRIBUTIONS 73

fU(u)

[s] u

Figure E4.3

1d thus
A ds 1
i IV ey
or
ds _ lm
di| 2V en

Hence the density function of the strain energy U, in accordance with Eq. 4.8, is

(2 ol -0 Jm

1
= = eXp i l =0
V' 2arcu 2¢

S Go

which is a chi-square-type distribution with one degree of freedom (see Eq. 5.40 of
{Chapter 5). Graphically, this distribution would appear as shown in Fig, £4.3.

'EXAMPLE 4.4

- The height of earth dams must allow sufficient freeboard above the maximum
reservoir level to prevent waves from washing over the top. The determination of
1his height would include the consideration of wind tide and wave height.
The wind tide, in feet, above still-water fevel is
F

2
B E400(!V

V4
where

¥ = wind speed in miles per hour
I = fetch, or length of water surface over which the wind blows, in feet
d = average depth of lake along the fetch, in Jeer
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If the wind speed has an exponential distribution with mean speed vy; that jg

. [
[ir(v) = — e viv =0
‘ iy

= 0 v <

then we determine the distribution of the tide Z as follows,

Denoting a = F{1400 d, we have # = g 2: thus

Umi«/f
a

and
dv .
dz 2V

Then, according to Eq. 4.8,

o = [ J2) (- ) |

However, in this case since f3-(x) = 0 for ¥ < 0, we have

. L z
Ll (J )
f 1 [z
=£;U\/—:T;cxp(-~;;'\/;) z =20

4.2.2.  Function of multiple random variables

g

Next, consider the function of two random variables ¥ and ¥,

Z=g(X,Y) (4.9
In this case, (£ = 2) refers to the same cvent as La(X, ¥) = 27; that is,
(Z =2) = [g(X,¥) = 2] = Vo X =0, Y =y

{oles, wi)= 2}

Henee, the PALE of Z is

pz{z) = 2.

iyl

P s, v) (4.10)

and the corresponding CDI" is

Fulz) = 3

aCri, w5z

P v (2, ys) (4.11)

In particular, il Z = X 4 ¥,
20 pxo(Eau) = 3 gyl s - @) (4.12)

R T all

prle) =

} t @
- Sut

’
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f random variables with Poisson distributions. Suppose 11.1(%
4 ¥ are statistieally independent and have Poisson distributions with

'.' ‘,il] 50 IS B » A : . S

A pameters v and 4, respectively; that is,

arameit

(]Ji') * ey
II)X(-T) e _;' ¢ ¥l

(ui)v _
priy) = U' - e

rhen according to K. 4.12, the PAIF of Z = X 4 Y is
pale) = X prla, 2 — @)

all

( l‘,t,‘, )1 ( ‘ut) z-_r e Crbpdt

Sral(z —a)!

g lbadt e Z [
etz —

i

: put the sum s the binomial expansion of (v 4 w)7/21; thus

)t
P Z(z) — t(i?'M)V—L o (it

: / Poisson distribution with parameter (» 4 uj.
which means that Z also has a Poisson distvibution with parameter (v -+ )

izing this result, we infer that the s wo or mare independent
(enoratizing this result, we infer that the sum of ty i

" Poisson processes is also a Poisson process; that s, 1

Z= 3 X,
gel

U5 where X5 has a Poisson PME with parameter v, the PMI of Z 15 also a
7 Poisson distribution with parameter

yp o= 2w (4.13)
{==]

it "o Poisson processes is not a Polsson process;
However, the difference of two Poisson processes 18 not ¢ 1 ;

: YL E1Y P T - RN a Pois-
©that ds, it can be shown that the PALN of Z = X+ does not yield a Pois

son distribution.

EXAMPLE 4.5

Suppose that a tol bridge serves three suburban residential districts A, B, €7 (see

. Fig. £4.5), 1t is estimated that during peak hours of the day, the average volumes of
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O

Totl

. Bridge

Figure F4.5

traffic from each of these three districts are, respectively, 2, 3, and 4 vehic
minute. f the peak vehicular traffic from the respective districts is
process, the traffic crossing the toll bridge would
average crossing volume of 9 vehicles per minute.

If X and ¥ are continuous, q. 4.11 becomes

f f Iz, wyde dy

fole, W) <)

o gt
[ [ Jxv (e, yyde dy

gz, ¥). Changing the variable of integration from 2 1o »

Iy (3)

where ¢t
we have

-] Z a(""l
Fyiz) = f f Iox(g ) | i { dz dy
ety & dz
Thus the PDEF of 7 15

J2(2) fw Py ) 1-8

—

: dy (4.15)

Alternatively, taking ¢=' = ¢z, 2), we also have

Ju(z) = f ) Jxv (e, g7t) i

Epecificially, if
Z o= aX -+ DY
we have

— by

_ e 1

and = — =
dz dz

dy !
T = e

a L

les Per
_ 4 Poissay:
also be a Poisson process wiy,

(4.14)

{1.15a)
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ﬁ o Ea 4,15 would he
3
1 z — by ‘
Julz) = / s fyy ( et y) diy (4.16)
o | 1] a
il X and ¥ oare statistically independent,
1
' 1 » 2 — by
P = [ (’) Jry) dy (4.160)
]/ o «
" pased on Bq. 4,154,
H
R 1 i ; .
Jz(z) = Eblf Sa{) fy( )d:v (4.16h)

EXAMPLE 4.6

ghown in Fig. E4.6 is an idealized madel of a one-story building, with the total
qass m concentrated at the rooflevel, Whensubjected to earthquake ground shaking,
he building will vibrate about #ts original (at rest) position, inducing velocity
pmponents X and ¥ of the mass, with a resullant velocity 2 = VXTI YR

if & and Y are, respectively, standard normal variates, that is, with distribution
LN, determine the probability distribution of the resultant kinetic energy of the
tiass during an earthquake.

“The resultant kinetic energy is

W o= mZ% = m(X*+ ¥?

1@1 U = mX? and ¥ = m¥*?; then
W=U-+V

from Pxample 4.3, we see that the distributions of U and ¥ are, respectively, chi-
quare with one degree of freedom; that is,

';(”) o — T > 0
fi V' 2w
.,-(I’) T e, @ U2 v 20
hi V2 mimw
v
m
— | 7
1
/
M X
F A AN AT a AN
{a) Elevation {bY Pian

Figure E1Lo  (0) Blevation, (b} Plan
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Then, according to B, 4166 and observing thal v = w — 1 2 0, we obtaiy the Jeting the square for the last integrand above, and then substituting

density function of the kinetic energy W as foliows: Comp

. i ] 1 e . p‘
J‘”.(HJ) = [ T N —— e L L w =1y i
2om Jy vy Vi - 1)
] " integral above hocomoes
e el V20 — )l gy ghe last ntegral above heeomes
H
0

f exp [ 3luy? — 2uy) Jdy = o' f exp (— Fuww?) duw

oty

\/2_1; (1-'2>
e QR |
U M 2

After some algebraic reduction, the final result for the density funetion of

. ] {3“ {ux + Hy)}z-‘
2 | Vox 2]

which we recognize is also a normal density function with mean

MNow let r = wfw; then du = wdr, and

. 1 . 1 ‘
_/;},-(W) PSR w.ﬂ).’.!mf ",,,1/3(1 _ ’_)7”1’,2 dr
0O

2am

it can be observed that the above integral s the beta function B(E, 1) of q. 349
furthermore, using BEq. 3.494 and observing that 1'({) = V' and Py =140 w
have

T, 7 hecoes
LG Abe
b - ST

Hence 7{ox

I
2m

e——w,"lm

Siplw) =

which is a chi-square-type distribution (see Eq. 5.40 of Chapter 5) with two degree iy = ux & opy

of freedom.

and variance

« . . ) — T T T
Sum (and difference) of independent normal variates. 11 X and ¥ o o o

are statistically independent normal variates with means and standard
deviations gy, ox and py, oy, respectively; the distribution of 2 = X 4 ¥,
according to Fq. 4.16q, 18

1 = 1(f2y— ux\ — ar\
Jalz) = f exp [ - {( - - A dy
2woxoy J_, 2 ox Ty
C - L)+ ()Y

2wavoy l 2 (\oy Ty

By the same procedure, it can he shown that Z = X — 1 is also Gaussian
with mean gz = py — wy and the same variance as above: o3? = ox* -+ oy’
On the basis of these results, it can be shown inductively tlat if

n
%= o aXs
o

where @; are constants, and X, are statistically independent normal variates
Nux,, oxo), then Z ig also Gaussian with mean

"
o - L pa = D (e (4.17)
. [ oxp | — L (ug? — 2@);;)} dy : =
- .2 E md variance
where . n
oy = Z alt oy} {(4.18)
1 1 fusi
I M
oxt o dy In other words, any lneer function of normal variates is also a normal
and variate. The relationships of Egs. 4.17 and 4,18, however, are net mited
to normal variates, We shall observe later in Scetion 4.3.2 that these
Ry equations are, in faet, valid for lincar functions of any statistically inde-

Pendent random variables regardless of their distributions.
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Figure E1.7

EXAMPLE 4.7

A trucking network links four cities, namely, (1) Cleveland, (2} New vy
(3) Philadelphia, and (4) Pittsburgh. The expected travel time for each brancy :
indicated in Fig. E4.7, in hours. Assume that the travel times for each 5r g;ls
branches are independently Gaussian, with 209 coeflicient of variation. Two iruc}:e
are cispaiched at the same time from Pittsburgh to New York City, with truck ,:
going via Cleveland and truck B via Philadelphia.

(a) What is the prebability that truck 4 will arrive at the destination wi

(b) What is the probability that truck A4 will
truck B?

. thin 9 9
arrive at the destination carfier than

Solution
{a) Let T, be the total travel time for truck 4. Hence
Ty =Ty + Ty

which is a sum of two independent normal random variables. The mean and
variance of T are, respectively,

Moy = gy A+ iy = 345 =8hr
and
(’.1“42 = 0y? o1 = (0.2 x 3P 4 (0.2 x 5)*
=0.36 4+ I = {.36 hr?
Therefore

R 9 — 8
P(T <9) = P e | = D(0.858) = 0.805

V136

(b) Let T, be the total travel time for truck B, The event truck A wilt arrive al the
destination earlier than truck Bis (T, < Ty or (¥, — T, < 0). It can be shown
that 7 is normal with

=gty T gy =4 + 2 =06hr

oy
: (0.2 42 + (0.2 x 2)* = 0.64 + 0.16 = 0.8 hr®

2
Ty

i

'

IWwelet Z = T — Ty, Zis also normal with mean

g ==, = pp, =8 — 6 = 2hr

ork,
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'aﬂd va]‘ia['lCC

1ce the required probability is

0 -2

' Pz <0) = D2 = B(—1.36) = 0.087
@ <0) (v 6) (~1.36)

XA MPLE 4.8

. In considering the safety of a building, the total force acting on the columns of the
puilding must be examined, This would include the effects of the dead load D (dueto
ihe weight of the structure}, the live load L (due to human occupancy, movabie

Turnituge, and the like}, and the wind load ¥,
Assume that the load effects on the individual columns arestatistically independent

Gaussian variates with
: Hpy = 4.2 kips

wy, = 6.5 kips
My = 3.4 kips

oy = 0.3 kips
a;, = 0.8 kips
o = 0.7 kips

' (a) Determine the mean and standard deviation of the total load acting on a

columi. . . .

(b) If the strength of a coJumn is also Gaussian with a mean equal to 1.5 times the
total mean force, what is the probabitity of failure of the column? Assume that the
coefficient of variation of the strength is 159 and that the strength and load effects

ate statistically independent.

Solution

(a) The combined load § is
S=D+L+W

which is also Gaussian with

My = fp o+ oy by =42 + 6.5 4 3.4 = 14.1 kip
and

oy = Vo b+ o, + oyt = V(032 + (0.8 + (0.7)° = 1.1 kip
(b} Failure of the column will oceur when the strength K is less than the applied
load S. Let X denote the difference R — S, namely,

X=R-5
Then {¥ < 0} represents failure, Since R and § are independent Gaussian variates,
X is also Gaussian with

iy = pp — pig = 15 x 141 — 14.1 = 7.05 kip
ay = Vot 4 ogt = V{(0up)? + og

e V(015 % 1.5 x 1410 + (1L1)?

= 3.36 kip

Hence the probability of failure is
-7.05

P{X <0) = 136

) = O(-2.1)

P —0.982 = 0.018
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Excavatlen, ~~ Ftg Consi, ~~ Wall Consi
2 #4{3) B

a

Figure K49 Construction activity network

EXAMPLE 4.9

The framing of a house may be done by subassembling the COMPONEnts in a plag
and then delivering them to the site for framing. While this subassembly of copp.
ponents is being done, the preparation of the site, which includes the EXCavation
through construction of the foundation walls, can proceed at the same time, These
activities may be represented with the activity network shown in Fig. F4.9 ang
described in Table E4.5.

‘Fable £4.9. Data of Example 4.9

Completion time (days)

Activity Description Mean Std. dev.
1--2 Excavation 2 1
2-3 Construction of footings 1 3
3-5 Construetion of foundation walls 3 ]
1-4 Precutting and subassembly of components 5 |
4-3 Delivery of components to site 2 3

Assume that the completion time of each activity is a Gauvssian random variable,
with the respective means and standard deviations given in Table I34.9. Clearly,
framing of the house cannot start until the foundation walls are completed and the

components are delivered to the site. What is the probabitity that this will be a$ least =
& days after work started on the job? Completion times among the different activi- -

ties may be assumed io be statistically independent.

Solution

Denote the durations of the activities listed above as X, X,, Xy, X, and X,
respectively. Let 7y be the total time required to excavate and construct the footings
and foundation walls, and T}, be the corresponding time for assembly and delivery of
the subcompanents. Then

=X +Xx4+Xx,
Ty = X, + X
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e required probability is

L P 28Ty 28) =PIy 28) + P(T, 28) — P(T, 2 8) P(T, > 8
According to gs. 4.17 and 4,18,

' MHp, =2+ 1 +3 = 6days

Topy = \/WT} = 1.5 days

and Mgy =35 + 2 =T days

op, = VI +} = 1.11 days

gince 1y and Ty are also Gaussian, we have

P(T, 2 8)

1l

By _
I - qa(sl - ’) =1 — $(1.33) = 0.0918

PT, > 8) =1 — (1,(81__”3) w1 DO.90) = 0.1841

Thence, the required p:‘()lmbi!ily(is
: p o= 00918 < 0.1841 — (0.0918 x 0.1841) = 0.26
Alternatively, the probability may be caiculated by observing that
pEPT 28 0T, 28 =1 —P(T, <8)-P(T, <8
= ] — (0.9082)(0.8159) = (.26

Producls and quotients of random variables. Yor the produet of
two random variables, say 2 = XY, we have

. 2
X=3
dr _ 1
de gy

Then 15y, 4.15 yields

M@:fwy

e 1Y

Jxov (Z ; y) dy (4.19)

Similarly, for the quotient of two random wvariables, for oxample
Z = X/ ¥, the density function of Z would he

Jz(2) :f Ly | fx v ey, y) dy (4.20)

-

In this regard, we observe that by virtue of the result for sums (and
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differences) of normal variates, it follows that the product and QUOtigy,
of statistically independent log-normal variates is also a log-nm.n'll
variate. Suppose A
ki
Z= 11X
=]

where the X/'s are statistically independent log-normal random variab)e
with respective parameters Ay, and {x,. Then :

nzZ= >hiX
sl

Since each In X, is normal (sce Example 4.2), it follows that In Z i alsy
normal with mean and variance, according to Eqs. 4.17 and 4.18, as follows,

E(nzZ) = 3

i=3

Az

if

i

Var(ln Z) = > %,

4=

x

Hence Z is log-normal with the above parameters h; and ¢,

EXAMPLE 4.10

The settlement of a footing on sand may be estimated on the basis of the theory of
elasticity as follows:

where
S = footing seltlement, in feel

P = average applied bearing pressure in tons per square foot (tsf)
B = gmallest fooling dimension, in feet

1 = influence factor dependent on footing geometry, depth of embedment,

and depih 1o hard stratum
M = modulus of compressibility
Assumethat P, B, I, and M are independent log-normal vartates with parameters A,

).,,,.R,, Ay and C, L, & . Ly, vespectively. The following values are given for the
design of a particular footing,

Coeflicient of

Mean variation
P (ish) 1.0 0.10
B(ft) 6.0 \]
I 0.6 0.1
M (1sh 32.0

“Henee
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) Petermine the mean settlement of the lfootin‘g and its f:oeﬁ:";cier_ﬂ o_f.vziriati'on.
i If the maximum allowable sctilement is 2.5 in., what is the reiiability against
®) o seitlement; that is, probability of no excessive settlement ?

".CCSSII\rC(fmc variability in M can be decreased by investing for better information,
ceducing the coefficient of variation to 57, at an experise of $§00, woulc‘i you
d this money ? Assume that the exceedance of the maximum allowable settle-
1d involve a damage cost of $50,000.

Ay
en
}:cnt wou

golution

(a) ’;Sz = (0.1 + 0 + (0.1 + (0.15)°

= 0.0l + 0.01 + 0.0225 = 0.0425
Apo=1In (1.0) — $(0.1)* = 0 — 0.005 = ~0.005
lpp=1In6 = 1792
Zp =1n (0.6) — }O.1P = ~0511 — 0.005 = ~0.516

2
In (32) — 0»%%15 = 3,466 — 0.011 == 3,435

S
I

—0.005 + 1,792 — 0.516 — 3.455 = 2,184

i

“The mean settlement, therefore, is

fi = exp (A + 3 = exp (—2.184 + 0.0212)
w exp (—=2.16) = (1151t

- and the corresponding coeflicient of variation is

. {b) Reliability = P(S < 2.5in.)

.206
B(2.99) = 0.9986

- (!n (2.5{12) — (w2.184})

(¢) We have to first determine the reliability of the design if 83, = 0.05. In this
case,

Q.0025
Zay = 3466 — e = 3,465
ang
Ay = —2.194
CS'“’ = 0.01 4 0.01 + 0.0025 = 0.0225
iy = 0.5
in {2.5/12y + 2.194
‘Hence the reliability = (D(L(J(T%S)
—1.572 + 2.194
= (O T L
( 0.15

= {415} = 0.99998
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Assume that the criterion for decision is based on minimizing the expected €ost, Ty,
expected cost of the first design is

E(C)

= (y + (1 — reliability)(cost of failure)
Cy 4+ (1 — 0.9986) 50,000

= Cy + 70

where €, is the fixed initial cost of construction. Similarly,
second design is
E(Cy) = Cy + 100 + (I — 0.99998) 50,000

= C, + 101

Therefore, on the basis of the expected costs, the decision would be th
should not be spent to gather more information on M.

EXAMPLE 4,11

A 15-ft-long 4-by-12-in. prismatic cantilever wood beam is carrying a uniformj,

distributed load w (see Fig. E4.11), with a mean load intensity of W = 180 1b/ft any

a COV of §,, = 15%,. The material is structural-grade California redwood wity a
rated average yield strength (paralle] to grain under bending) of 4, = 4000 Psi ang
COV é,, = 205,

Prescribe log-normal distributions for w and a,,.

(a) Determine the probability that the maximum extreme fiber stress in th

beam will exceed the tensile yield strength of the wood.

The bending moment at any section of the beam is

_owi?

2

Since w is a log-normal variate, M will also be log-normal (see Example 4.2),

For a rectangular cross-section, the extreme fiber stress at any section of the beam -

may be given by
oM

Y

where b and /4 are the width and depth, respectively, of the rectangular beam. It

follows, therefore, that 4is also a log-normal variate.

In the present case, the maximum bending moment occurs at the support, witha =

2.

! 15 ft

Figure E4.11

the expected cost pf the

at Money -

q:
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ean value of ;

M =1 x 180 x 15% x 12 == 243,000 in.-tb
Hence the mean maximum extreme fiber stress in the beam is

- 6 x 243,000

= = 2531 psi
“ (127 531 pst
4 COV
and CO 5 _ 159
The required probability is
. pr o= Plo > a) = p(_‘f; > 1_0) = P(]n 2o 0)
’ ) .d-?,, "jT.'

.and since .+ and <, are log-normal variates, In (4/4,) is Gaussian with mean

A=(nd —}8%) —(n 3, —§0%)

p 1 5
=0 o o =R 52
In ‘51’ 2(( a (uy)
2531 I a .
=ln S — [(0.15) — (0.200] = —0.45
i 4000 2[(0 15) ( Y]

and standard deviation

[V + 6, = V(0.15) + (0.20)*

(.25

. Thence,

0 4 0.45
ey —_— P — =
Pr=1 (( 0.25

= 0.036

) =1 — 9(1.80)

(b) Suppose that in order to ensure an adequate fevel of sal"(;:l)(, the probability of
 overstressing the wood beyond its yield strength is not permitted to exceed 0,001
. Redesign the beam section, keeping the beam width the same at 4in, (that is,
deterniine /).

The limiting condition is

PlnZ > 0) = 0.001
W
or
Piln —@M > 0) =0.001
bk"’x)—y
But
b,
is also Gaussian with
6(243,000) i , ,
2 [} et = {(0.15% — (0.20)*
A=lo Fasoeye 3 IO 15Y — (0204
91.13
= In = + 0.1
and
L= 025
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Therefore the required limiting condition becomes

o .
S LR IR L)) 99_1_} 0,001

0.25
from which we obtain

= 9113 exp (0.25 x 3.09 + 0.01)
= 199 .30
Thus
I 1412 in.

() Determination of allowable desipn stresy. We observe that the beam size ma
determined (or designed) using a mean allowable stress 4y, as follows. yo
If we limit the maximum load-induced stress to a specified allowable stress 4
should have o
oM

e S Pa

Therefore, for a given width b, the minimum required depth £ is
. OM

B o= il
" T b,

Cleasty the beam would be of larger cross-section and thus safer if' we use lowe
v‘alues of 4, However, if 4, 15 too low, the design would be unnecessarily conseryy,
live and thus wasteful. In order {o ensure an adequate level of safety without beig

overly conservative, the allowable siress <y may be delermined on the basis of g+

spcci{ied tolerable probability py. For this purpose, we observe that, for smal 4,
and d,,

and thus

— A
P = I - (!)(T)

- —In (EIJLJ_
Vel o+ O,k

from which

<
In ;—_y = O~ p Ve 0.2

Thus, limiting the applied stress 10 5 = B¢ we have

"‘)_'1,' - oIy
5 =P IO = p) Ve +6,7]

e

Theratio /5, is called the mean “safety factor; denoting this as ¥g» We obtain the
mean allowable stress
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Yo = exp [D7H1 — ppyy/ STﬁE]

ing this (o the problem in (b} above, where py; = 0.001, we obtain

) .Ap]}ly y
vo = exp [P1(0.999)(0.25)] = %5730 = 7 16
Thvs _ 4000 ,
- gy == "‘_—216 = 1852 pbl

for b = 4in., _
Hence. _6M 6(243,000)

2 o o = 196,81
U P T T5)

and h o= 14,03 in,

tthig vafue of /1 is not exactly the same as that of part b because of the approximation

~ntroduced above for A)

The central limit theorem. Onc of the most signiﬁcanlt theorems in,
orobability theory is that pertaining to the limiting distribution of a sum of
ianﬁOm variables known as the central Iimat theof‘mn:. Stated loosely, the
heorem says that the sum of a large number of individual }'aa':..dom. COM=
ponents, none of which is dominant, tends to .{'-h(.a 1.1(‘)1'11'134 dl:‘ii;l‘ll’?lltl()l’l.ﬂ-s
the number of components {regardless of their 1nstm§' distributions) in-
ereases without limit. Therefore, i a physical process is the refsult of the
totality of a large number of individual effects, tl?en zJ.f:cordmg ’?o the
central limit theorem the process would tend to be Gaussian; that is, the

gum of the individual effeets would tend to have a Gaussian distribution.

The proof of the central limit theorem is beyond our scope of interest;
however, the essence of the proof may be demonstrated with the foliowing
gxample. Suppose that

a3

1
o o Ry X
S=n 2.

il
where the X /s are statistically independent and identically distributed
with PMI,

i

1
2

I)(Xf = 1)
P{X;= ~1) =%

Cand P(X; = 2) = 0 otherwise. The factor 1/4/n is necessary to retain a
~inite variance for S as n — .

Then the probahility distribution of S, for increasing Vi}-l}lE!S of n{n = 2,
5,10, 20), would be as shown, in Fig. 4.1 {with the probabilities at specified
values of 8 spread over the appropriate intervals).

By virtue of the central Hmit theorem, the produet of a lm‘gc number of
independent factors (none of which dominates the product) will tend to the
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A n=g
4710 \ /N, 1)
LN
/ \
V2NN B TR RN

7 n=5

\(' N{O 1)

111,

0 4L/
ffagm-e. II lI_)(’monsi.i'en,im| of the central limit theorem (
probability of centered value) I

8

log-normal distrihntion. That i [
g-normal distribution. That is, regardiess of t]
produet

P

¢ IIx:
iesl

will approach a log-normal distribution as 2 —s
Generalization

variables can be generalized 1o derive the distribution of
random  wvarinbles. Briefly, if

s t ("
4= g(Xy Xy, oo, X))
then, generalizing 1. 4.14, we have

Falz) f /

{olrn, a2

w0 ) gl
]j_m -[wo '[—\g -f,\'|_ BRI (ﬁ"l) Yy Rf,,) (]‘T'l e (I’.(l?,.t

where g1 = g1 (z, ay, -

f‘\'l. T Xy (-’EI; Yy :Un) dxy « - da,
}

i)

Tz, we have
1 w % gz
]r/(g) = -/,-; o ./;w fwf\i s 4-\'11(!7_'15 Ty vy In) !
g
| "ar ; dz dry -+ - dz,

Area of cach rectangl
b

w distributions of X, 1,

I'he method deseribed above for a {unetion of

a funetion of 5

PR RHY s T . o .
;). Changlng the variable of mtegration from
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” ” " Cagt

o= [ s ) S e e ()

5. MOM ENTS OF FUNCTIONS OF RANDOM VARIABLES

a7

'1-3.] . Introduction

: A(:(rt)l'(iiflg to Section 4.2, the probability distribution of a functim'],'oi'
qniont variables can, theoretically, be derived from the probability
: pibutions of the basic random varisbles; however, such derivations are
Hy difficult, espeeially when the funciion is nonlinear. In such
-muns‘i':'l.nces, the moments—particularly the mean and variance—of the
qunetion May he the only practically obtainable infurn‘mi,‘i(;m. In many
ipstances, (his may be sufficient for practical purposes even if the correet
pml)al)i]_ity distribution must be left undetermined. Buch moments are
fanetionadly related to the moments of the individual basic v;au‘ia.t(rsf and
therefore may be derived as funetions of the moments of the basie varates.

dist
enerh.

0y

o

The mathematical expectation of a fune-
a generalization of Ty,
-, Xy, its mathe-

Mathemutical expeciation.
“gion of several random variables can be obtained as
'3.8: thus, Tor a function of n variables, 4 = (X5, X, -
Smatical expectation is

= E[‘(](Xl, AX'.!; Tt X")j

v =)
e f P f ()‘(-'lfl, Qo, * e, ﬂ?,i) fx;,}fz. e, Ny (-’L’l, e .’En)

—t —0

o

421y

. dﬂfl (Z.T-z e d.’lfu (424:)

In the following, we shall use Ea. 4.2 as the basis for deriving the (first
and second) moments of linear funetions of random variables; the results
“will e the basis for the first-order approxzimate moments of nonlinear
functions.

(1.22)

£.3.2,  Mean and variance of a linear funection
“Consider the moments of linear functions. Tirst of all, suppose that
Y =aX +b

“where @ and b are constants. Then according o Iig. 3.8, the mean value
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of ¥ is the mathematical expeetation of aX 4 b, or [y = a X, — aX,, the results would be

Y X ” : B(YY = oy B{X1) — a3 E(X 4.29)
Iﬁ(l) = ]f:((l}l o} b) = j (Ct.’l} - b) f\(’L) dx r( ) 1431 { 1) t ( ) (

-_ﬂﬂd . - -y -
w w var(Y) = a Var(Xy) + @’ Var(Xy) — 2w Cov{Xy, X)) (4.30
= (.t/ x fx(z) do 4 b/ Jx(a) dx

— i

v, and Xz are statistically independent, Cov(X,, Xy = 0 and Lgs.
e
98 and 4.30 reduce to

Var(¥) = af Var(X,) + a® Var(X,) (4.31)

= ali{X) +
whereas the variance of V is
Var(V) = E[(Y — uy)?]
El(aX + b — aux — b)7]

ylore generally, if

i

7
Z 24 ,'X i
qua]

here ¢; are constants, we have, on extending the results of Kas. 4.27

ey ‘2 TR N rom .
a f (2 — ux)?fy(a) de rough 4.30,

—0

= a? Var(X) }’) Za E(X) (4.32)

(4.26)
J«urizhermm‘g, i Y = aX) + aXs, where ap and Gz are constants, {hoy
according to fq. 4.24,

Var(Y) = 2 a@ Var(X;) ZZH a; Cov{Xy X} (4.33)
i=]

[

B(Y) = f [ (asey 4 aoma) fryx, (an, ) doy day

g ¥ 0o

" H n
= S afch A 22 ditpioxox; (4.330)
gl

i

= ”1f il () duy 4 azf ofy,(2a) duy

-

‘where pi 15 the correlation coefficient botween Xy and X Morcover, if Z

s . .
lhe miiegrais e, rosnect 3 TV . IR N ' h A . N )
tegrals are, respectively, £(X,) and E(X,); hence s another Hnear function of the X's, that is,

B(Y) = ai{ X)) -+ aB (X)) (4.27)

That is, the expected value of o sum is the sum of the expected volues. The
corresponding variance is

Var(Y) = E[(aX; + aXy) — (0-1#,\'1 + Gapx,) F
= Elay(Xy = py)) + @ (X — px)) ]
= Bl (Xh — ux)® + 2 ;e (Xp -~ ) (X2~ py)
gt (X — )2 ]

l'h‘((}g.;ni/ing_; that the expected values of the first and third terms are
varianees, whereas that of the middle term is a covariance , 1. 3.72, we:
obtain

Zo= 3. biX;

grml

‘thon the covarianee between Y and Z can be shown to be

Cov(Y, Z)

il

Stab Var(X) + 2o ab, Cov(Xy, X (4.34)
g

L)

i) e

= Z abok SN abipioxax; (£.34a)
-l

i J

EXAMPLE 412

. The tengths of two rods will be determined by two measurcments with an unbiased
instrument that makes random error with mean 0 and standard deviation o in each

Var(Y) = a® Var(Xy) + o Var(Xy) + 2me, Cov(Xy, X;)  (4.28)
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measurement, Compule the variance in the estimation of the lengths T and 7, b
the following methods: 2y
(a) The two rods are measured separately.
(b) The sum and difference of the lengths of the two rods are measured insteag
of the individual lengihs. )

(a) Let M, and M, denofe the measurements obtained for the two rods, then

Ty== My + &
and
To =M, + &

where & and &, are the ervors involved in the measurements. Then the variance iy, t}
estimation of Ty is

Var (1) = Var (M + &) = Var (M) 4 Var {5,) = 0 + o = o*

Similarly, Var (T,) = Var (M, + &) = o2,
(b) Let M, denote the measured combined length of the two rods, and M denote
the measured difference between the lengths of the two rods; then

Ty+ Ty =M+ g

e

and
Ty =Ty =M, + 5

Solving these two equations simultancously, we have
- M, -+ M, n gy o8y

T
! 2 2
and
M, — M o
L 1,8 1
2 5t

Assuming that the errors &, and ¢, are statistically independent, the variance in the
estimation of T is, therefore,

2 2

ar ({‘“4:! + M;) + Var (“fa ‘2|‘ 34)

Var (Ty) = Var (M"’ TMy st fz)

i
<

2

[Var (&) 4 Var (s,)]

2

) I3
YA
2

f

£ I

Similarly, “
Var (T,) = Var (_5;”]11,) -+ Var ([i%&j)

= % [Vai' ("‘l:]) + Yar ("::d)]
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erefore we see that the second method of measuring the lengths of the two rods is
ter, since the variances in the estimation of the true lengths 7' and 73 are smaller.

Th
et

© EXAMPLE 4.13

The total vertical foad on the ground-floor celumns of an s-story building wouid
p the s of the individual contributions {rom each of the # floors; thus

Y = 72'1 X,

where X; is the load on the column {rom the ith floor. Assuming the mean and
yariance Lo be the same for all floors (this appears to be the case {rom actual load
surveys [Mitchetl and Woodgate, 1970]), the mean load on the column is

‘[(1'. i }f,{,(.‘\.

and the variance, from Eq. 4.33q, is

wnon
Var(Y) = nVar(X) + Var(X) > % py

T3

where pg; 18 the correlation between the loads on the fth and jth floors.
(a) M the loads on any two floors are assumed to be statistically independent, that
is, piy = 0, then Var(¥Y) = n Var(X), and the standard deviation would be
:’)'}, = '\/H’ Tx

and COVY _
Vioy Ox

Gy ==

mity Vi
The design load is usually specified to be on the high side; suppose that this is
taken at k standard deviations above the mean. The design load for » floors then is
Y¥ = uy + koy

Sy

My (1 + & 7%)
(5\1\'

n(l +k Valitx

This means that the total design load on the ground-floor column increases with the
number of stories; however, on the average, the load from each floor is

8y
— = (1 + Kk \/E) My

which means that the contribution from the individual floors decreases with the
number of floors in the building.
The reduction factor that specifies the load contribution from each floor, which

can be defined as # = ¥Y*/nX*, therefore, becomes

Ay dy
n,r.tX(l + k& o P+ k o

= (1 kdy) AT + kdy

il

I
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(b} However, if the correlation between any two floors is the same and posis
(thatis, p;; = p, a positive constant for any 7 and /), then the vaviance of ¥ bcc@m\é
’ 5
Var(¥) == n Var(X) + Var(X)n(n — 1)p] :
Var(X) [n + u(n — 1)p]

i

B(Y) = fw g(x) fx (2) do

-0l

and

nd

In this case, the reduction factor would be

R A P
y* 1 4 ;mx J - —n S

F = ——":m=
nx# 1 kdy

Var(Y) = fw Lo(z) — BE(Y) I fx () da

'(:}l}vi(nlf?'l“)": to obtain the mean and val'.imme. of the funetion Y \_Vith' the
hove relations, information on Jf,\((:@) is needed. In many apphl ations,
however, the density function fx (z) may not be known; information may
‘e limited to the mean and variance of the original variate X, 1"11l't;lltal'l'xi()l:e,
eyen when fx () is known, the integrations indicated above may beld1f~
fiewlt to perform. Ior these reasons, approximate mean and variance of the
pnetion ¥ would be practically useful and may be obtained as follows.
" Expand g{X) in a Taylor series about the mean value px; thus

which is larger than the corresponding factor obtained earlier assuming statistic,
independence. Any correlation between the loads on different floors may be gy
pecied to be positive; on this basis, therefore, the assumption of statistical in
dependence would yield results on the unsafe side.

4.3.3. Product of independent variates

If » random variables X;, Xy, . . ., X, are statistically independent, the
mean value of their product :

Z:Xsz...X-,l

dy 1., ., dyg
e ol A4 (X — Y X — )R
Y o= glux) -+ (X — px) ax T 2( px) 7%

i._ PR ({_1.37)

13 :_‘.yi](,’l'(?- the derivatives are ovaluated at wy. ‘ .
CIf the series is truneated at the linear terms, we obtain the first-order
E(Zy = f N f ” 21 oo @ g} - o o (w) day e dee gpproximate mean and variance of Y
VA = T T I, 2 Jx, Ay 1 LT, .
o B(Y) =~ g(ux) (4.38)
I o w _-.}_lﬂd
= [ apate) do [ it oo [ autote e, o
- o o Var(Y) ~ Var(X — ) ((TX)
= B{(Xy) B{X2) -+ B(X,) dg \* '
o Var(X) | =5 4.39
Therefore Var{X) (dX) ( )

Y, = ¢ 4 4 ' 5 . e . . .
o T (4.85) We can observe that if the funcetion g(X) is approximately linear for the

entire range of values of X, Hgs. 4.38 and 4.39 should yield good ap-
proximations of the exact moments (Hald, 1952). Moreover, when the
varlanee of X is smali relative to g{ux), the above appreximations should be
edequate for many practical purposes even when the funetion is nonlinear.

The ahove first-order approximations may be successively improved by
‘ineluding the higher-order terms in the Taylor series; for example, i the
second-order term in Kq. 4.37 1s included, the second-order approximations
are aceordingly

Similarly, we can show that
B(Z%) = B{X®) BE{X®) «« B{X.D
Henee the variance of the product of independent variates is
ozt = LX) B(Xo?) oo B(X.2) — (uyypxg. . opx,)?  {4.36)
4.3.4.  Mean and variance of a general function
For a general funetion of a random variable X, that is

d*y
HB AN . L Var(
Y = g(X) BY) > glus) + 4 Var(X) o) (4.40)
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and

o dg N LAY
Var()) s Var (X) (‘f?«) s Vart(X) (’ 'ff.)
4. (,Zz\."

dX

dg &y 1

- (X — py)E ot et D
+ I px) dX dX? 4

Such improvements, of course, would involve the higher moments of the
original variate in the evaluation of V ar(Y), as shown in K. 441, i
which she third and fourth central moments of X are involved.

For practical purposes, of eourse, we may use Iog, 4.40 for E(}) angd

Eq. 4.39 for Var(Y); in this way, we can take advantage of an improyeq < 0
mean value for ¥, without Involving more than the mean and variange of °

X,
EXAMPLE 4.14

The maximum impact pressures of ocean waves on coastal structures may be
determined by

KU®
7 PRy

Puax = 2. 17

where p = deasity of water; K = length of hypothetical piston; O = thickness of
air cushion; and U = horizontal velocity of the advancing wave.

Suppose that the mean crest velocity is 4.5 {1i/sec with a COV of 20%. The density
of sea water is about 1.96 slugsfeu 1, and the ratio K/D = 35. Determine ihe mean
and standard deviation of the peak impact pressure,

According to Egs. 4.38 and 4.39, we obtain

E{pmus) = 2.7(1.96)(35)(4.5)% = 3750.70 psf
=2 06,05 psi
and
Ky
Var (p,,.) == (2.7,0 B) QO Var (15

= (27 x 1.96 x 35 x 2 x 4.5P(0.20 x 4.5)
Thus
Tpmnx = 2.7 X 1,96 % 35 x 2 x 0.2 x (4.5)

= 15003 psf = 10.42 psi

Thus the COV of the maximum wave pressure is 0.40, which is twice that of the wave
velocity,

If ¥ is a function of several random variahles, that is
Vo (X, Xy, oL, X))

we oblain the approsimate mean and varianee of ¥ similarly as follows.
Ixpand the function ¢(X,, Xy, . .., X)) ina Taylor series about the

£.3. MOMENTS OF FUNCTIONS OF RANDOM VARIABLES 19y

sean values pys, My - -, #x,; 0 this case, we have

" . (’)g
Y = {/(!—U\"” BXgy onvy I‘lr\’u) + Z (J\f - #]\’i) (‘}\'
gz A
1 i n ) X .
e 3 Z (X: =y ) (X — px) (1.42)
Z fxe} el
where the derivatives are evaluated ab py,, pxg, . . ., gy,

Traneating the series ab the linear terms, and by virtue of Tigs. 4.32 and

; 4.33, we obtain the first-order approximate mean and variance of ¥ as

follows:
BY ) o glpny sxe - -, px,) (4.43)

whieh savs that the mean of the funetion Is equal {approximately) to the

funetion of the means; and

k]

Var(V) o Do e Var(X) + 3.9 e CoviXy, X)) (1.44)
qenl

)

where ¢ and ¢; are the values of the partial derivatives dg/0X; and dg/0N,
respectively, evaluated ab pyy, gy, o0, g, Obsorve that if Xy and X are
uncorrelated {or statistieally independent) for all < and j, then Eq. 4.44
reduces to

Var( ¥} o Z ¢ Var(X) (4.440)
qum]

Again, the conditions for the applicability of the above approximations

- are the same as those stated ecarlior for the single-variable case. The above
.:_ approximate mean and variance may also be improved by ineluding the
0 ligher-order terms of the Taylor series expansion of (X, Xy, ..., X.).
I particular, from g, 4.42, the second-order approximate mean of ¥
~would be

B{Y) > glpx, i - -5 oy,
I & a%g , P ‘
+ = () Cov{X, X)) (1.43a)
2 ,z]:;Z] aX.0X; e
where the derivatives are evaluated at px,, gy, « .., gy, Again, it X, and
X, wre uncorrelated, Iog. 43¢ hecames

R 2
) 4; Z(‘f’)\-‘;n-(,\’,) (1.43)

E(Y) o gy, s - 2\ Gy ;

Eguation .04 1s the basis of error propagation analysis in measurement

o theory (Jordan, Bggoert, and Ineissel, 196G1; Richardus, 1966). However,
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it is also a useful approximation for many other engineering Probioem,
{Cornell, 1969; Ang, 1973); in partieslar, it is the basis for the genory)
analysis of uncertainty as presented in Vol. IT

o 7
L

/
—

y

Figure F4.15

EXAMPLE 4.15

Consider a 5-meter-high column supporting a load S, which is inclined at an angle
0 from the vertical as shown in Fig. E4.15. Here S and 0 are random variables with
respective means and standard deviations.
S = 100 Newtons,
]

1 oy == 20 Newtons
= 30°(0.524 rad),

ay = 57(0.087 rad)
Determine the mean value and standard deviation of the max‘mum bending moment
on the column induced by the inclined load, Assume that § and 6 are statistically
independent.

The maximum bending moment occurs at the fixed base of the column, which is
(sce Fig. E4.15)

M = hSsind
Therefore, on the basis of Eq. 4.43, the first-order approximate mean bending
moment is
M = /S sin 0

= 5(100) sin 30°
= 250 Nm (Newton-meter)
The corresponding variance, according to Eq. 4.444, is
oy o= agt(hsin 0 + ag*(hS cos 0)
e (20)3(5 sin 30°F + (D.087)4(5 » 100 cos 30%)7
= 2500 + 1420
= 3920 (Nm)*

y
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ing & standard deviation
olding & standarc
© oy = 63 Nm

o accuracy of the estimated mean bending moment may be improved by using the
{.order apln‘()ximation of Eq. 4.43a; thus

_ - 1/6°M 1/8°M M
o T o] (TN e 5 2 G TP
M == h8sin § 4 2( asz)rf‘.’ + 2( 803) Gt + (BS a()) Cov (5, 00
= 250 — L(Shsin §) 052
= 250 — (100 x 5 sin 30°)(0.087)*
s 249 Nm

; This shows, therefore, that the first-order approximation is quite accurate for this
~case.

FXAMPLE 4.16

A 2-span bridge across a 400-ft-wide river is 1o be built with a center pier about

"2(}0 ft from one bank of the river. To locate the center position of the pier, a base line

7 is established along one bank as shown in Fig. E4.16 and the pier position is

determined by intersecting the lines of sight from stations « and b, with 0, fixed at
©

99811[)})03(: that the pier is to be tocated 200 ft from the base line, which has a

measured mean length B = 300 {t and a standard deviation o = { in.

If the angle & measured from station b has 8, == 33°40" and o5, = 2, what are the

mean and standard deviation of the measured distance [ to the pier focation?

D = Buani,

Thus

D = 300 tan 33.667°
= ]9%.82 {t

o e (lan 6o + (B sec? 0,)0p,
= 0444(4)7 + (300 x 1.444)(5.818 x 1032
= (.0666 12

oy == 0.2581 [t = 3.10 in.

Figure F1.16
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EXAMPLE 4,17

Thc capital cost (in $1000) of & combined municipal activated sludge plant my b
estimated as follows: ¥ be

C, = 583@%% + (110 4 370) i%%

S
+ (77 + 2300 =% —
( Q)(m 1)
in which Q is the flow rate in million gallons per day (mgd); S, is the biolo
concentration of influent BOD (biological oxygen demand} in milligram per i
{mg/h); and S, is the concentration of suspended solids (in mg/l).
Suppose that a waste water treatment plant is needed for the following conditiong,

mean flow rate, @ = 5 mgd

mean BOD concentration, §, = 600 mg/!

mean concentration of suspended solids, S, = 200 mg/l

with coefficients of variation 30 %, 20 %, and 15 %, respectively

Determine the average capital cost of the plant, and corresponding standarg
deviation.
= 600 20

C, = 583(5)%-8 4+ (110 + 37 x 5)(—m~) + {77 + 23 x 5)(M9 1)

200 200
= §3,138,219
\ = 378 S, 2
e | s 0.84)Y(O~0.1¢ e B 2
o, [ 83(0.89)Q11¢ + = 4 23 (200 1)} 5o

110 + 370\ T\
+(M)0302+(77+23Q)(_2

500 700 ) U8

37 x 6007° (110 + 37 x 5\
200 W} (15" + ("“’”W) (120y*

i

{583(0.84)(5}“‘0-16 +

77 4+ 23 % 5\*
2
+ (————200 )(30)
539,213 + 31,329 4 829
= 571,371

TFherefore, o¢ == $756,000 and the COV is 4, = 0.24.

i

4.4, CONCLUMMNG REMARKS

In this chapter, we saw that the probabilistic characteristies of a function
of random variables may he derived from those of the basic constituent
variabies. These include, in particular, the probability distribution and the
main descriptors (mean and variance) of the funetion. The derivation of
the distrihution, however, may he complicated mathematically, especially
for nonlinear functions of multiple variables. Therefore, even though the
required distribution may {thcorctically) be derived, they are often im-
practieal to use, excopt for special cases (for instance, linear functions of

in
Sma ny

gical
ter -
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dependent normal variates), In view of this, it is often neeessary, in
applications, to deseribe the function in terms only of its mean and
pance. Jiven then, the mean and variance of linear funetions are amen-
to exact evaluation; however, for a general nonlinear funetion, (first-
order) approximations must often be resorted to. In this chapter, we have
inmvoduced and developed the elements for such first-order analysis; these
epts will form the basis for the formal analysis of uncertainty covered

vl
able

| pROBLEMS

Secﬁ{m 4.2

41 Theforce in the cable of the truss shown in Fig. P4.1, when subjected to a load
W, is given by

(2) Ifthe load ¥ is a normal vaniate N{gy, o), derive the density function
of the force F,.
(b) If pyr = 20 metric tons, oy = 5 metric tons, and A = §/, what is the
probability that the force £, will exceed 30 tons?  Auns. 0.907.
A dike is proposed to be built 1o protect a coastal area from ocean waves (see
Fig. P4.2). Assume that the wave height I is velated to the wind velocity by

the equation
H =02V

where H is in meters and V is velocity in kilometers per hour (kph). The
annual maximum wind velocity is assumed (o have a tog-normal distribution
with a mean of 80 kph and a coefficient of variation of 15 %,
{(a) Determine the probabitity distribution of the annual maximum wave
height and its parameters.
(b) If the dike is designed for a 20-year wave height, what is the design height
of the dike?
{c) With this design, what is the probability that the dike will be topped by
waves within the first three years?

~= Coble

Y Dike

Figure P4.1 Figure P1.2
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4.3

4.4

4.5

FUNCTIONS OF RANDOM VARIABLES
In Example 4,14, the maximum wave pressure on structures is given as

oK
Poux ™ 2.7 _B' u®
where U is the horizon(al velocity of the advancing wave.
(a) If U has a log-normal distribution with parameters A,; and &,;, derive the
distribution of p, . using Eq. 4.8. '
(b) Using the data given in Example 4.14, determine the probability thay the
maximunt impact pressure wiil exceed 40 psi.  Ans. 0,127,
The hydraulic head loss /iy, in a pipe due to friction may be given by g
A . ; Y the
Darcy-Weisbach equation

L

hy = f—— 2
L PYs

where L and 2> are, respectively, the length and diameter of the pipe: fis the
friction factor; and ¥ is the velocity of flow in the pipe. If ¥ has an exponen.
tiab distribution with a mean velocity vy, derive the density function for (e
head ltoss fiy.
From the statistics collected for towns and cities in Hlinois the average con-
sumption of water, in gallons per capita per day, is found to increase with (he
size of population P as follows:

1)

A =1951n— —~ 17 for P > 1000

40
Suppose that the population in 1974 for a certain developing town can be
described by a log-normal distribution with a mean of 10,000 and a COV of
3 % Itis expected that the median of the population will grow at 10% (of (he
1974 poputation) per year, while the COV will remain roughly constant (sec
Fig. P4.5).

(a) Assume that the distribution of population s log-normal at any future
time; determine the distribution of X, the average per capita water
consumption in 1984,

(b} Determine approximately the mean and variance of D, the average total
daily demand of water in 1984,  Ans, 2,08 x [g%; 1.53 x i0"°,

-Median

Popuiction

19714 1984

Yeor

Figure P4.5

: s6

47
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Figure P4.6

The time of travel between cities A4 and B is a normal variate with a mean
value of 10 hr and a coefficient of variation of 0.10 (see Fig. P4.6). The time of
{ravel between cities B and C is also normal with a mean and standard devia-
tion of 15 and 2 hr, respectively. Assume that these two travel times are
statistically independent.
{2) Determine the density function of the travel time between cities A and C
going through B if there is exactly 2 hr of waiting in city 8.
() What is the probability that the time of travel between A and C will
exceed 30 hr; will be less than 20 hr?

A simple structure consisting of a cantilever beam A8 and a cable BC is used
to carry a load S (see Fig. P4.7). The magnitude of the load varies daily, and
its monthly maximum has been observed to be Gaussian with a mean of
25,000 kg, and a coefficient of variation of 307,

(a) If the cable BC and beam AB are designed to withstand a 10-month
maximum load {that is, & maximum load with a return period of i0
months) with factors of safety of 1.25 and 1.40, respectively, what are
the probabitities of failure of the cable and of the beam?

Sm

/ Beom
8

NN

Figure P1.7

Cab\e*\

Figure P19
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4.8 The occurrences of hurricanes in a Texas county is described by a p

4.9

4.10

FUNCTIONS OF RANDOM VARIABLES

(b Assuming statistical independence between the failures of the beam al
cable, what is the probability of fuilure of the structure (that js, lhe;l]-d
will be unable to carry the load)? !

(¢} H (instead of part [a]) the strength of the cable were random N{(50 0o
kg 10,000 kg), what would be its failure probability under (h ol

€ foag 89
. ~ ) . . OiS-‘SO;]
process. Suppose that 32 hurricanes have occurred in the fast 50 years; og a
the 32 hurricanes eccurred in the hurricane season (A ugust I to Novembey 30y
(a) For this Texas county, estimate the mean rate of occurrence of hurr;‘:
canes (i) per year; (ii) per month in the hurricane season; {iif) per men,

in the nonhurricane season.

(b) A temporary offshore structure is to be located off the coast ¢
county and it is expeeted that the structure will operate for 19 1y
between April | and October 31 of the following year. What is the
number of hurricanes that will occur in this period of time?
What is the prebability that this structure will be hii by hurricanes
during its period of operation ?

{d) Suppose that whenever a hurricane occurs, the owner of the structupg

Otithg
Meap

(c

e

will incur a Toss of $10,000, which includes repairs for damage, fogg of \

revenue, and so on. Whal is the owner’s expecied total {oss fron
hurricanes? The total loss T (in dollars) is given by

T = 10,000 N

where N is the number of hurricanes during 1he period of operation,

which is assumed to be a Poisson random variable,
(e) What is the probability that the total loss T will exceed $10,000°
To insure proper mounting of a lens in its housing in an aerial camera, g

clearance of not less than 0.10 cm and not greater than 0.35 em s to be &

allowed. The clearance is the difference between the radius of the housing and
the radius of the fens (see Fig. P4.9),

A lens was produced in a grinder whose past records indicate that the radii of
such lenses can be regarded as & normal variate with mean of 20.00 cm and a
coeflicient of variation of 194.

A housing was manufactured in a machine whose past records indicate that
the radii of such housing can be regarded as a normal variate with mean of
20.20 cm and a coeflicient of variation of 2%, What is the probability that the
specified clearance will be met for this pair of lens and housing?  Ans. 0.2/6.
The safety of a proposed design for the slope shown in Fig, P4.10 is (o be
analyzed. Suppose that the circular arc A8 (with center at 0) represents the
potential failure surface and that the wedge of soil contained within the arc
will slide if the clockwise moment about poirt 0 due to the weight of the soil
W exceeds the counterclockwise moment provided by the frictional forces F,
and Fy. The following information is given:

Mcan Standard deviation
(kips) (kips)

W 400 60

Fi 100 30

I 300 60

[ thig
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. 1201 1..gen ,1

Figure P4.10

(a) Let Mr = total resisting {counterclockwise) moment, Determine
a) L =
3 , Var (Mp). . ) . )
b) G\f(lllt:l]ie}is the( probability that sliding alo_ng the arc AB v\’falll o:;gt(l):l'n
¢ Assume that W, F,, F, are statistically independent normal ra
ariables,  Ans. 0.000376. o
() ann?)iletank is proposed to be located.a‘s showlvvn in r(;géiPté& 5112,:12;
maximum permissible probability 'of :%hdmg failure is 0.01,
can the oil tank be? Ans. 123.3 kips. N .
The water supply to a cily comes from two sourcesﬁqanllfly,l);c}n]n the
reservolr and from pumping uuderg:‘found watcrzli?)isélt;{)‘:ag;:nea;ﬁ qm.lrc(.: ot
’ ’ | 2] s a‘ « R
1ext 3 months, the amounts of water av . : e are
éllllcciei)endcntly Gaussian N(30,3) and N(15,4), res?cci;w?};’crilgcdn;)l;[1he
g-lllom Suppose that the demand in the next 3 months can be de:
«l 3

robabili ass function piven in Fig, P4.!_1. ' - o
p!(;)tidll)igtlé)r’“i:;t;\?{b; probagility that there will be insufficient supply of water

in the next 3 months. . . ) . . i and
() lRepea{ part (a) if the demand is also Gaussian with the same mean an

variance as those of Fig. P4.11. . . (
4,02 The traffic on a bridge may be described by a Poisson process with mean

411

. 5:'. Reservoir
W N (30,3)

Pumping
N{I5 .4

0.3

PMF

0.1

Az

20 30 40
Bernand In Nexi 3 Monins (inm.g.}

Figure P1.11
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arrival rate of 18 vehicles per minute. The vehicles may be divided in
types: trucks and passenger cars. The weight of a truck is N(13, 5) when o
and N(30, 7) when loaded, whereas that of a passenger car is N(2, 1}, At
are in tons. Trucks make up only 2057 of the total traffic and half (he
are loaded. The weights of the vehicles are statistically independent.
(a) What is the probability that a vehicle observed at random wj
exceed 5 tons?  Ans. 0.801,

(b) What is the probability that 3 vehicles in a row wilt each exceed 5
{¢) How would the probability in part (b) change i it is known |
vehicles are passenger cars and the remaining one is a truck ?

(d) M there are 3 passenger cars and one empty truck on the bridge, wh

tongy

tons?  Ans, 0.0446.

(e) What is the probabitity that there will be exactly one truck byt no -

passenger cars arriving within a 10-second interval?  Aus, 0.03,

4.13  The pole shown in Fig. P4.13 is acted upon by two loads P, and Py so thay the

bending moment at the bottom of the pole is

M, = 30P, — 20P,

Here, Py and P, are independent Gaussian random variables with the fo.

lowing parameters.

Mean Standard deviation
Load (kips) (kips)
P, 50 5
Py 20 3

(@} Determine the mean and standard deviation of the moment M, at the
base of the pole.

(b) If the moment-resisting capacity at the bottom of the pole is M,,, a
Gaussian random variable with a mean of 1750 fi-kips and a standard

deviation of 150 fi-kips, what is the probability that the pole will fail

under the loads P, and P, 7
{c) Five such poles are arvanged in line to support a bank of critical
electrical equipment. Adequate support of the equipment requires at
feast 3 adjacent poles. What is the probability of survival of the system?
(d) Incontrast (o part {¢), what is the probability that exactty 3 poles will fail
{regardless of the positions of the poles)?

e 7,
N80, i0) n Min,

30 11

20N

o
2

Figure P4.13 Figure P1.15

(0 4,4

1 Unils:
mlt‘ks-

Il gy

hat p ¢

= ' aljg
the probability that the total vehicle load on the bridge will exceedt318 :

. Fignre PLIG
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A traffic survey on the various modes of fransportation between New York
and Boston shows that the percentage of {otat trips by air, rail, bus, and
car are 15.3, 10.6, 9.4, and 64.7 percent, respectively. The distributions of
the trip times in each mode are approximately Gaussian with means 0.9, 4.5,
4.8, 4.5 hr, and coefficients of variation 0.15, 0.1, 0.15, 0.2, respectively.
(a) Whal proportion of trips between New York and Boston can be com-
pleted in 4 hr?
(by What is the probability that transportation by bus is faster than by car
between these two cities?
The feasibitity of an airport Jocation is to be evaluated. Among many other
criteria, ope of them is to minimize the travel time from the city to the
airport. For simplicity, assume that the city may be subdivided into 2
regicns, 1 and 11, each with independent Gaussian travel times to the airport
as indicated in Fig. P4.15 in minutes. The ratio of air passengers originating
from the two regions is 7 (0 3,
{a) What percentage of the passengers will take more than 1 hr to get to the
airport?  Ans. 0.0635
{b) A limousine service departs from the airport and picks up or unloads
passengers at 1 and I, consecutively, before returning to the airport.
Assume that the travel time for the limousine between stops is also
Gaussian as shown in Fig. P4.F5. What is the probability that the
limousine will complete a round trip within 2 hr? Is this equal (o the
probability of making 2 rounds within 4 hours? Justify your answer.
Assume that the travel times between rounds are also statistically
independent,
{£) A passenger is waiting at the airport for his friend so that they may leave
fogether at a 9 a.m, flight. At 8:50 Am., he still has not seen his friend.
He becomes impatient and calls his friend’s home at region I1. 1f his
friend had left home at 7:50 A, what is the probability that his friend
will arrive at the airport in the next [0 minutes?  Ans, 0.857.

The existing sewer network shown in Fig. P4,16 consists of pipes AC, BC,
CD,ED, DF. The mean inflows from A, B, E are 30, 10, 20 cfs, respectively.
Suppase that the low capacity of pipe DFis 70 cfs, and all the other pipes can
adequately handle their respective flows. Assume that the inflows are statis-
tically independent normal variates with 10%] COV.
(a) What is the probability that the capacity of pipe DF will be exceeded in
the existing network ?
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4.17  The number of truck loads of solid waste arriving at a waste treatment pl
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(b) Suppose that the sewer from a newly developed area is proposed i
laf)oke_cl up to the present system at D, and this additional inflow jg(.)
Gaussian with a mean of 30 cfs and COV 10 %. How should pi )\adiso
be expanded (that is, what should be the new capacity of pipe D;‘)

that the risk of flow exceedance remains the same as that in the preg ‘"
sen

system ?

the next hour is random with the PMF given in Fig. P4.17.

The time required for processing each truckload of solid waste is Gaussig, -
SSigy i

N{(10, 2) in minutes.

W kips/ft
o 2;% N N I I

a4 1o f1

7
Figure P4.18

What is the probability that the total time needed for processing the solig
wagte arriving in the next hour will be less than 25 minutes? Assume that the
processing times are statistically independent.  Ans. (0.884.

The cantilever beam shown in Fig. P4.18 is subjected to a random concen-
trated load P and a random distributed Jload W,
Assume

P is N(5, 1), in kips

Wis N(1, 0.2), in kips/ft

(a) Determine the mean and variance of the applied bending momen
M, = S50W + 10P. Assume that e = 0.5 (that is, the loads are
correlated).

(b) The resisting moment of the beam M,, which is statistically independent
%f tthe fippliied mgment M,, is also Gaussian N(200, 50) in ft-kips.

clermine the probability of failure of the bes assumi
e GaLI[ssian_ ¥ of the beam, P(M, < M,) assuming

Direct
Precipitalion

Streom B

Pi1 2

{8}
M2 =50% Sand

Reservoir

{E}

Pit 3
1y =70 %% Sand
33 <005

Direct
Evaporalion

Munizipal
and indusiriat
Water Supply

Figure P4.20
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There are three sources of inflow into the reservoir, namely, streams 4 and B
and direct precipitation £, as shown in Fig. P4.19. Each of these three sources
depends on the total ruinfail R in the watershed surrounding the reservoir.
The lollowing are relationships between A, B, D, and R:

A == 02R + 03
B=015R 4+ 04
D= 0.03R

All are in milion gallons (mg). The rainfall R for the next 3-month period is
assumed 1o have a normal distribution N(13, 2) in inches. The outflows from
the reservoir consist of irrigation /, municipal and industrial use M, and loss
through direct evaporation E. During the next 3 months, each of these three
outftows is a normal random variable with

I = N(1.5,03)

M = N, 0.1}
I = NQ2.5,04)

all in mg

Let 7 denote the total inflow into the reservoir for the next 3-month period.
Assume that T, £, M, I are statistically independent,
(2) Are A4, B, D statistically independent? Why?
{(b) Determine E(T), Var(T). What is the distribution of 77
¢y Assume that the present storage of the reservoir is 30 mg. Let .S be the
storage of the reservoir 3 months from now. Determine: E(8), Var(S).
What is the distribution of §7
() What is the probabitity that there will be an increase in the reservoir
storage 3 months {from now?

A conerete mixing plant obtains sand and gravel mixtures from 3 gravel pits.
The mean percentages of sand by weight in each pit are 80, 50, and 70,
respectively, and the coefficients of variation of the percentage of sand are
0.05, 0.08, and 0.05, respectively (see Fig. P4.20). Assume that gravel makes
up the remaining percentage by weight. Two, three, and five units of sand-
gravel mixture are delivered, respectively, from the three pits and are mixed
together. What is the probability that in the resultant mixture, the ratio of
sand to gravel by weight does not exceed 2.5 to 1 and also does not fall below
1.5 to 17 Note that these two limits may represent the tolerable sand-to-gravel
ratio for acceptable concrete aggregate. Assume that the contents of the pits
are statistically independent.  Ans. 0.987.

A catch basin js used to control flooding of a region. Aside from serving the
immediate neighborhood, it also receives the storm water from another
district through a storm sewer.

Suppose that the catch basin has a storage capacity of 50 in. of water; also,
any water in the basin is drained at the average rate of 2.5 in, per minute with
a COV of 20%.

The rate of inflow from the two sources of drainage water during a rainstorm
is as follows,
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Standard
Mean rate deviation
(in, per minute) (in. per minute)

Immediate neighborhood: 2 1
Distant district: 1.5 0.5

Assume that all variates are independent and normal, and that the Yates o
inflow and outflow are constant with time,

(a} Determine the mean and standard deviation of the rate of filling (per

minute) of the catch basin.

(b) Determine the probability of flooding (basin capacity exceeded) iy, 302

minutes of rain (assume that the basin is dry before it rains).

(¢) The probability of flooding may be decreased by increasing the capaciy |
of the catch basin, If it is decided to decrease this probability to no mog,
than 1074 during a 30-minute rain, what should the catch basin Capacity :

be?

A plain concrete column is subjected to an axial load W that is a log-normg |
variate with mean W = 3000 kN (kilo Newton) and COV 6y, = 0.20 (see

Fig, P4.22).

The mean crushing strength of the concrete is G = 35,000 kN/m? (kilo :
Newtons/square meter) with COV 8, = 0.20. Assume uniform compressive :

stress over the cross-sectional area of the column, so that the applied stress i
w

G —

where A == cross-sectional area of column.
(a) What is the density function of the applied stress?

{b} Determine the probability of crushing of a 0.40m x 0.40 m column, -

Assume a convenient probability distribution for g

(c) If a failure {crushing) probability of 10-3 s permitted, determine the .

required cross-sectional area of the columin,

(d) Derive the expression for the allowable design stress corresponding toa

permissible risk or failure probability pp (see Ixample 4.11).

Figure P4.23 shows a schematic procedure of the treatment system for the °

waste from a factory before it is dumped into a nearby river. Here X denotes

the concentration of a pollutant feeding into the treatment system, and ¥ .
denotes the concentration of the same pollutant leaving the system, Suppose

that for a normal day, X has a log-normal distribution with median4 mgfl and
the COV is 209/, Because of the erratic nature of biological and chemical
reactions, the efficiency of the treatment system s unpredictable. Hence the
fraction of the influent pollutant remaining untreated, denoted by F,isalsoa
random variable. Assume Fis also a log-normal variate with a median of 0,15
and COV of 10%,. Assume X and F are statistically independent.

(a) Determine the distribution of ¥ and the values of its parameters. Note

that
Y =FX

(b) Suppose that the maximum concentration of the poliutant permitted to
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[

Cross-Sectionat
Area = A

influgnt X Treatment Effluent Y
Syatam

|

Figure P4.22 Figure P4.23

be dumped into the river is specified to be 1 mg/l. What is the ])I:Obﬂbllily
that this specified standard will be exceeded on a normal day?

(c) On some working days, owing 1o heavy production in the factory, the
influent X will have a median of 5 mg/l instead. Assume that the
distribution of X is still log-normal with the same COV and that the
efficiency of the treatment system does not change stauslt:cail’){. Suppose
that such a heavy work day happens only 107 01‘. t;he time. Then, ona
given day selected at random, what is the probability that the specified
standard of 1 mg/fl for ¥ will be exceeded?

4.24 Youarc taking a plane from O’Hare to Kennedy Airport. Being conscious of

the congested conditions at O'Hare, you would like to find out your chance of
delay. Based on available data, the delay time (beyond the scheduled
departure time) at O'Hare is an exponential random variable; its mean value
depends on the weather condition as shown in Fig. P4.24.

i}

Good Weather
T o=thr

Bad Weather
T =2hr

Figure P4.24  Waiting time at O’Have
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The relative likelihood of good and bad weather conditions at O'Hare jg aboy,
Jtol,

(a) What is the probability that your delay at O’Hare will be at least 15y

beyond the scheduled departure time? Ans. 0.285, r

(b) The delay in landing at Kennedy Airport on a good weather day also p,

an exponential distribution with a mean of i/2 hr. What is the Prob

ability that the total delay in arrival would be more than 2 hy jf the

weather is good at both O'Hare and Kennedy airports? ¢

Assume that there is no delay in flight, (Hinr. Derive the density f; Unctioy

for the sum of two exponential variates using Eq. 4.164.) Ans, 0.25

4.25 A construction project consists of two major phases, namely, the constructioy
of the foundation and the supersiructure. Let ') and T, denote the res

random variables with E(7,) = 2 months and E(7T,} = 3 months. Assumg

also that the superstructure phase will start only after the foundation phase -

has been completed.
(a) What is the probability that the project will be completed withiy
6 months?

(b) ¥ Ty and T, have the same exponential distribution with E(T) =

E(T,) = A, show that the project duration has a gamma distribution,

4.26 The mean number of arrivals at an airport during rush hour is 20 planes per
hour whereas the mean number of departures is 30 planes per hour. Suppose

that the arrivals and departures can each be described by a respective Poissop

process. The number of passengers in each arrival or departure has a mean of -

100 and COV of 40%.
(a) What is the probability that there will be a total of two arrivals andfor
departures in a 6-minute period?
(b) Suppose that in the last hour there have been 25 arrivals,
(i) What is the mean and variance of the total number of arriving
passengers in the last hour?

(i) What is the probability that the total number of arriving passengers
exceeded 3000 in the last hour ? State and justify any assumption you
may make.

4.27 The total distance between 4 and B is composed of the sum of 124 in-
dependent measurements, See Fig. P4.27. The random error £ in each
measurement js uniformiy distributed between £1 in. If the total distance A8
is approximately 2 miles and the lengths of the segments are approximately
equal, compute the following.

(a) The mean and variance of the error in each measurement.
{b) The probability that the error in each measurement is not more than

0.017%5 of the actual length of the segment.

{c) The mean and variance of the tatal error in the distance AB.

Abbtrttbtt « 0 s s b 4 s e e B
L Approximately 2 miles

Figure P4.27

: . Pective -
durations of each phase. Assume that 7, and T, are mndependent exponemja? i
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(d} The probability that the total erroy is not more than 0.01 % of the actual
distance AB.

gpction 4.3

26 A eylindrical volume has an average measured outside diameter of D, = 5 m
“" and an average inside diameter of £2; = 3 m, and a height of /4 = [0 m (see
Fig. P4.28). If the COV of these measurements are, 1'«;:specuvely, 2%,1%,and

4%, what are the mean and variance of the volume, if’ D, and D; are perfectly
correlated (that is, pp, 5, = 1.0) whereas these are statistically independent
of H?

(
“!

Figure 1,28

Small flaws (cracks) in metals grow when subjected to cyclic stresses, The rate
of crack growth (per foad cycle) may be given by
f_{_/_f ey C’(AK)H)
dn
where L
= A5V ad

= existing crack size

=
LS
o

AS

It

applied stress increment
and C and m are constants, If

C =05 »x 10° o=
and
A = 0.1 1in.

A8 = 50 ksi

with d, = 209,

with d, == 309

determine the mean and COV of the crack growth rate per load cycle. Assume
that 4 and AS are statistically independent.  Ans. 0.00392; (.633.

The range R of a projectile is given by the following:

1,2
R = -2 5in 24

2]

where g is the gravitational acceteralion, ¢, is the initial velocity of the
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Figure P4.30

projectile, and ¢ is its direction from the horizontal (see Fig, P4,30),
If

¢ =30  and &, =59

¥y = 500 ft/sec gy, = 50 {Ufsec

determine the first-order mean and standard deviation of the range R. Asgyy
that g == 32.2 fifsec?; ¢ and v, are statistically independent. Evaluate also 1
second-order mean range.  Ans. 6723.6; 1359.8: 6781.6 fr.

The number of airplanes arriving over Chicago O'Hare Airport during 1,
peak hour from various major cities in the United States are listed below, &

and

Average number  Standard

City of arrivals deviation
New York 5 2
Miami 3 1
Los Angeles 4 2
Washington, D.C. 4 1
San Francisco 4 pA
Dallas 2 0
Seattle 3 1

Suppose (hypotheticaliy) that the holding time 7' (in minutes) at O'Hase :.

Airport is a function of the number of arrivals from the above citics
specifically,
T =4v'N,, in minutes

where N, is the total number of arrivals {during the peak hour) from the:

cities listed above,

Assuming a log-normal distribution for T, determine the probability that the |
holding time will exceed 25 minutes. Assume that arrivals from different cities

are statistically independent,

In a study of noise pollution, the noise level at C {ransmitted from two noise ©
sources as shown in Fig. P4.32 is analyzed. Suppose that the intensities of (he :
noise originating from A and B are statistically independent and denoted as £, -
and Iy, with mean vatue 1000 and 2000 units, respectively, and the coeflicient -

of variation is 10%, for both £, and fp. Since the noise intensity decreases will
distance from the source, the following equation has been suggested:

- " ]
160 = iy
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_——Noise Sources -

Fi gure P4.32

where
[ = intensity generated at a source
I(x) = intensity al distance x {rom the source
(a) Let /e be the neise intensity at C, which is the sum of the two intensities
transmitted from A and B, Determine E(l¢), Vor (I).

(b} A commen measure of noise intensity is in terms of decibels. Suppose
that the number of decibels £ is expressed as a function of intensity [ as

D o= 40 In 21

Delermine the approximale mean and variance of D, that is, (he
number of decibels at C,

2433 The velocity of uniform flow, in feet per second, in an open channel is given

by the Manning equation
149 e
Vomm ll REBRL
"

where

S5 = slope of the energy line
R = hydrautic radius, in feet
n = roughness coefficient of the channel

Consider a rectangular open channel with concrete surface (@ = 0.013); R is
estimated (o be 2 ft (averape value} and the average slope $ is 19, Because
the determinations of R, S, and # are not very precise, the uncertainties
associated with these values, expressed in terms of COV, are as follows:
G = 005, 0g == 0.10, and 9, = 0.30.

Determine the first-order mean value of the flow velocity V, and the under-
lying uncertainty in terms of COV, Evaluate also the second-order approxima-
tion for the mean flow velocity.

3 The settlement of a coiumn footing, shown in Fig. P4,34a,
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Figure P4.34a

is composed of two components-—the settlements of the sand and ¢la

load) of the two strata, denoted Fg and F,., are independent normal VaTiate

N (0,001, 0.0002) and N (0.008, 0.002), respectively. The total column loaq is -

W, which may be assumed to be statistically independent of Fg and Fe.

(a) If ¥ = 20 tons, what is the probability that the total settlement wi
exceed 3in. 7 Ans. 0.007. d cment wil

(b) Suppose the load ¥ is also a random variable with the PMF given
Fig. P4.34b. "

Pyiw}

Figure P4.34b

With this PMF of W, determine the mean and variance of the total
settlement by first-order approximation. In this case, what would be the
probabily that the scttlement wilk exceed 3 in, assuming that settlement
{follows a normal distribution? Ang. 2.2; 0.5]; 0.058,

- T . . S{E.- d .
The flexibilities (that is, inches settlement per foot of strata per ton ofyap )‘]i,[:ld

5. Estimating Parameters From

(Observational Data

51, THE ROLE OF STATISTICAL INFERENCE

IN ENGINEERING

“1ye have seen in the previous chapters that onee we know (or assume) the

disiribution function of a random variable and the values of its parameters,

fhe probabilities assoclated with events defined by values of the random

qariable can be computed. The caleulated probability is clearly & function
of the values of the parameters, as well as of the assumed form of distribu-
son. Nuturally, questions pertaining to the determination of the param-

1 eters, such as the mean value p and variance o®, and the cholce of specific
L gstributions are of inierest.

Answers to these questions often require observational data. For example,

i determining the maximum wind speed for the design of a tail building,
| past records of measured wind velocities at or near the huilding site are
pertinent and important; similarly, in designing a left-turn lane at an
“existing highway erossing, a traffic count of left turns at the intersection

may be required. Based on these observations, information about the

 probability distribution may be inforred, and its parameters estimated
L statistically.

In many geographic regions, data on natural processes, such as rainfall

~intensitios, flood levels, wind veloeity, earthquake frequencies and magni-
tudes, trafic volumes, pollutant concentrations, ocean wave heights and
“forees, have been and continue to be collected and reported In published
2 records. Tield and laboratory data on the variabilities of conerete strength,
“yield strength of steel, fatigue lives of materials, shear strength of soils,
< efficiency of construction crews and equipment, measurement, errors in
©surveying, and many others, continue to be colleeted. These statistical
i data provide the information from which the probability model and the
17 corresponding parameters required in enginecring design may be developed
©or evaluated.

The techniques of deriving probabilistic information and of estimating

“ parameter values from observational data are embodied in the methods of

219
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smabor; only the concepts underlying the above methods are developed,
a their significance to engineering problems are emphasized and
. _

Reol Worid

Inherent variability and estimation error

1.1
5 mmay be emphasized that cven when the dist-ribx';’t.ion funetion ."ii'l.d .it-s
-)'5,]'{11110{30['3 of a random variable are kmmtn, we Stl_l% cannot predict with
(ainty the oceurrence (or nonoccurrence) of specific evc.sl}ts. At best, we
an s8Y that an event will oceur ‘-\Vith an assoc&gﬁeti probability. The under-
N g uncertainty, in this case, is due t‘.o'thc 1:111.61‘(51“; randomness of the
aatural phenomenon. However, uncertainty arises also .fmm the inac-
pacies in the estimation of the parameters and in the choice .Gf the distri-
ation. For example, when available data are 1}mit_ed, the efstlmated mear
and varianee may not he aceurate and the distribution f unction iietermmed
- the basis of available data may not be the most appropnate. Buch errors,
erefore, would contribute additional uncertainty.

Upeertainties associated with errors of parameter estimation can be
Jqueed by increasing the amount of data, whereas the uncertainty associ-
iied with the inherent variability may remain unchanged or may even
sperease with additional data.

- More generally, errors would also include inaceuracies of modeling and
sediction. or example, when an idealized mathematical equation is used
o evaluate an engineering system, or its response to specified input, the
smperfection of the mathematical model gives rise also to further un-
ertainty. Such imperfections may be due to factors whose effects were not
oxplicitly reflected in the model, or to gross idealizations neeessary for
sathematical tractability and urgency of engineering solutions.

In general, therefore, we shall consider uncertainty to be the result of
inherent or natural) variability as well as of (predietion) error. A general
wodel for the systematic assessment and analysis of uncertainty is de-
eloped in Vol. IL

Data Collection

ool

Estimation Of Parameters, Statistical
Choice Of Distribution Inference

Caiculation Of Probehillties |
{Using the prescribed distributions
and estimated parometers)

|

Information For
Decision—Moking
And Design

Figure 5.1 Role of statistical inference in decision-making process

statistical inference, In which information obtained from sampled data is
used to make generalizations about the populations from which the sam-:
ples were obtained. Inferential methods of statistics, therefore, provide
link between the real world and the (idealized) probability models
sumed or prescribed in a probabilistic analysis. The role of statistical in-
ference in the decision-making process is schematically shown in Fig. 5.1
This chapter is devoted to the estimation of statistical parameters; the
subjeet of determining probability distribution is covered in Chapter 6.

Although there are other inferential methods of statistics, only those that:
are most basic and of wide applications in engincering are discussed here.
These include principally the methods of estimation {(point and interval:
egtimations} in this chapter, determination of probability distributions in:
Chapter 6, and regression and correlation aralyses in Chapter 7. Chapter 8;
presents the Bayesian approach fo the estimation problem. The mor
esoteric topics of statistics such as design of experiments and analysis o
variance are not covered. Moreover, we shall not dwell on such theoretical
questions as the unbiasedness, efficiency, consistency, and sufficiency of an .

.2‘ CLASSICAYL APPROACH TO ESTIMATION
OF PARAMETERS

fassical estimation of parameters is divided into point and dnterval
wslimation. Point estimation is concerned with the ealeulation of a single
number, from a seb of observational data, to represent the parameter of the
nderlyving population; interval estimation goes further to cstablish a
atement of confidence in the estimated quantity, resulting in the de-
rination of an interval indicating the range wherein the population
parameter may be located {with the associated confidence).
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Figure 5.2 Role of sampling in statistical inference

5.2.1.  Random sampling and point estimation
As alluded to earlier, the parameters of a probability model may be eva
uated or estimated only on the hasis of a set of observational data obiaine

sampie values is neeessarily an estémator of the parameter. In other words

the population. As indicated in Fig, 5.2, the real-world population may b
madeled by a random variable X, with probability distribution Fx(z) an
associated parameters, Tor example ¢ and o in the case of the normal dis
tribution. The form of fy{x) may e derived on the basis of physteal coz
siderations, or determined empirically, as deseribed in Chapter 6. Invar

sampled observational data.

T a o . gk . . I3
Griven a seb of sample values, there are different methods for estimadin

S Y ot PR T [ . ! :
fm.m the “population”; such a data set represents a sample of the DOpPuS
lation, and thus the value of a parameter ealeulated on the basis of th

the exact values of the population parameters are generally unknown;
the best that can be done is to make estimates of these values by sanmpling:

ably, however, the parameters such as p and ¢ must be estimated from;

the parameters; among these are the wmethod of moments and method of
wmarinumn likelihood. Regardless of the method, estimation of parameters
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5 pecessarily based on a set of .Sample values, say @y, ++«, @y, called a
aple of size n from the 1)0[’311130011' X. Usually such a sample 1s assumed
canstitute a rondom sample; this means that the sucecessive sample
"}g.luf?*‘—‘ are independent and the underlying population (or the distribution
) remains the same from one sample value to another.

we shouid point out that there are certain properties that are desirable
of & point estimator: the propertics of unbiasedness, consistency, efficiency,
and suffictency. If the expected value of an estimator is equal to the param-
oter, the estimator 1s said to be unbiased. Unbiasedness, therefore, implies
that on the average the value of the estimator will be equal to the param-
sier; however, nothing is said about whether the individual values of the
pstimator is close to the parameter itself. On the other hand, the property
of consistency implies that as »n — o, the estimator approaches the value
{ the parameter. Consistency, therefore, is an asymptotic property-—
'Pya.cticaily, it means that the error in the estimator decreases as the sample
qe inereases. Ffficiency refers to the variance of the estimator; if every-
Ling else is equal, an estimator 8, is said to be more efficient than another
#, if 61 has a smaller variance than that of 8. Finally, an estimator is said
10 be sufficient if 1t utilizes all the information in a sample that Is pertinent
0 the estimation of the parameter.

~ g practice, however, it is impractical to require all or many of these
propert.ies s seldom, in fact, is there an estimator that possesses all the above
properties. In the following sequel, we may refer to one or more of these
properties 1n connection with specific estimators.

The method of moments., In Chapter 3, we saw that the mean and
varianee are the main deseriptors of a random variable. These are related
to the parameters of the distribution, as shown in Table 5.1 for a number
of common distributions. For example, in the case of a normal random
variable, the parameters @ and o of the distribution are also the mean and
yariance of the variate, whereas, in the ease of the gamma distribution,
the parameters » and k are related to the mean and variance as follows:

.
d

o E{(X) = L'y
d Var(X) = k/*

On the basis of the relationships between the moments of a random variable
and the parameters of the corresponding distribution, such as those shown
In Table 5.1, it follows that the parameters of a distribution may be de-
termined by first estimating the mean and variance (and higher moments,
i necessary) of the random variable. This, in essence, is the basis of the
method of moments.

- Intuitively, it seems that the sample moments may be used as estimates

18
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of the corresponding moments of the random variable. Tn this regarg

as the mean and varianee are the (weighted) averages of X and (X _ s
the sample mean and swnple variance can be defined as the re
averages of a sample of size n, namely 2, - -

1 T
F o= 21‘1
o

Speetiy,
<y &, a8 Tollows,

and

i n :
§ = - a — )¢ 5.0y
’ 7 ; (@ %) (5.2)

Accordingly, & and §* are the poind estémates of the population me
and population variance %, respectively,

After the mean and variance of the random variable (or higher MoTnenty

if required) have been estimated, the parameters of its probability (]istrihui '
fion can then be determined ; for example, through the relationships givey, -

in Table 5.1 (sce Ixample 5.2).
1t should be pointed out that Fo. 5.2 is a “biased” estimate (Freung
3 X : AT ) T i '
1962} for the variance. This bias can be removed by dividing the sum of

squares with (n — 1} instead of n (see Bq. 5.32) ; thus the unbiased sample
varianee,

n

TR A 63)

1s preferred over Bq. 5.2, Of eourse, for large », there is little difference
between the two estimates of gs. 5.2 and 5.3,

By expanding the squared terms, it can be shown that Iiq. 5.3 may also

be expressed as

1 n B
§ = ( Sl - ﬂ:ﬁz) (5.3a)
fus]

EXAMPLE 5.1

Consider the data on the crushing strength of concrete for 25 specimens listed in
Table E5.1. To determine the values of its mean and variance p and o2, we apply
Eqgs. 5.1 and 5.3, obtaining

¥o=oe S x; = 5.6 ksi
25 i%}. '

and

, 1 [&E
&= [Z xt - 25(5.6)2] = (.44 (ksi)?
24 | 4

On the basis of the data, the mean and variance of the crushing strength of the
concrete are 5.6 ksi and 0.44 (ksi)?, respectively.

u)e

an g
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Table E5.1. Computation of Mean and
Variance for Concrete Crushing Strength
of Example 5.1.

Specimen
number Xy xf
f 5.6 31.36
2 53 28.09
3 4.0 16,00
4 4.4 19.36
5 5.5 30.25
6 5.7 32.45
T 6.0 36.00
g 5.6 31.36
9 7.1 50.41
10 4.7 22.09
11 . 5.5 30.25
12 5.9 34.81
13 6.4 40.96
14 5.8 33.64
15 6.7 44.89
16 54 29.14
17 5.0 25.00
18 5.8 33.64
19 6.2 318.44
20 5.6 31.36
21 5.7 32.49
22 5.9 34.81
23 54 29.16
24 5.1 26.01
25 5.7 3249
5 == 140.00 ¥ o= 794,52
_ 140
X = 55 = 5.60

5% == il?‘; [704,52 — 25(5.60)%] = 0.44

The calculations for # and 2 can be performed conveniently in tabular form as
illustrated in Table E5,1.

EXAMPLE 5.2

Data for fatigue life of 75 $-T aluminum yield the histogram of Fig. 1.5. It is
suggested that a log-normai distribution will it the shape of the histogram well.
Estimate the parameters A and £ of the log-normal distribution,
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The sample mean and samyple variance are computed to be

£ = 26.75 million ¢ycles
5% = 360.0 (miliion cycles)*

According to the relationships in Table 5.1, the mean and variance of

normal distribution are given by
EX) = exp (4 + (Y
Var(X) = E3X)( — 1)

a ]()g

Hence, the estimates of the parameters 4 and ¢, denoted as A and Z are obtained ag

the solutions to the following equations.
exp (4 + 11 = £ = 2675
(26752t — 1) = s = 360.0

Thus, 4 = 3.08 and { = 0.64.
The method of maximum likelihood.
that is popuiar among statisticlans is the maximum likelthood method. 1y
contrast to the method of moments, the maximum likelihood method prg
vides a procedure for deriving the point estimator of the parameter direetly
Congider a random variable X with density function f(x; 8), in which ¢ ig

the parameter, such as the mean h by the exponential distribution. On the
hasis of the sample values @, - -+, &,, one may inguire: “what 18 the most

likely value of @ that produces the set of observations xy, ««-, 2,7 In
other words, among the possible values of 4, what is the value that will
maximize the likelithood of obtaining the set of obscrvations? Suely ig the
rationale underlying the maximuwm likelihood method of point estimation,

The likelihood of obtaining a partiewlar sample value z; can be assumed
to he proportional to the value of the probability density function cvaluated
at x;. Then, assuming random sampling, the likelihood of obtaining »
independent observations zy, «-., 2, i

Ly, < ooy w; 6) = flag; 0) f@e; 0) o {2 0)

which is the Hkelihood function of observing the set oy, -+, 2. The maw-

(5.4)

mum Likelihood estimator 6 is then the value of  that maximizes the likeli- -
hood function L (z, - -, x,; 8). This estimator may he obtained by differ-

entiating L(z, «--, 2,; 0) with respeet to ¢ and setiing the derivative
equal to zero, giving usually an absolute maximum (Hoel, 1962) ; that s,
§ is obtained as the solution to the following equation.

OL{ay, o+, wa; 0}
il

o
[l

0

Because of the multiplicative nature of the likelihood function, it is fre-
quently miore convenient to maximize the logarithm of the likeiihood

A methed of point estimation
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prction instead; that is,
dlog Lz, «ov, 20 8 .
& log Lz, -+t 8) 0 (5.6

a9

he solution for 4 from Eq. 5.6 should be the same ag that obtained with

€
iR

Tor density functions with two or more parameters, the likelihood
- function bhecomes

I-’(I'I} Y xn; '9]; tty, am) == IIf(:Ul; 9]; Ty em} (5'7)
=1

.+

, 8 are the m parameters to be estimated. In this case, the

chere 6y,
aximum likelithood estimators would be obtained from the solution to the

: following set of simultaneous equations.

trry Bﬂl)

ol{ny, <o, my; b,
9,

s 0

i

jw= 1, e, m (5.8)
The maximum likelihood estimate (MLE) of a parameter possesses
many of the desirable properties of an estimator mentioned earlier. In par-
sealar, for large sample size n, the maximum likelhood estimator is often
ansidered the “best’” estimate, in that it has the minimum variance
asymptotically) (Hoel, 1962).

SEXAMPLE 5.3

- The times between successive arrivals of vehicles in a traflic flow were observed as
“follows.

——

1.2, 3.0, 6.3, 10.1, 5.2, 2.4, 7.1 sec
uppose the interarrival time of vehicles follows an exponential distribution; that is,
1
(1) = - et
fr0) =5e
“Determine the maximum likelihood estimate (MLE) for the mean inierarrival

ime 2.
From Eq. 5.4, the likelihood function of the seven observed values is

7
Lty o123 2) = T 5 exp (=10

= (A7 exp (m; E.ﬁ,)

. 7
) il iwhere 1, is the fth observed interarrival time and % = 2 . Then, according 1o Eq. 5.5,
- {a=]
aL 1« [ N2t
il ) £ — S a1 L3
5 Ta% exp ( )LL.',) + A Texp ( 3 L.f,) 75 0
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a Zr" I
A =T A fexp [ =< X)) =0
2 7

From which we obtain

or

7

;o= L:ff“ = 5.04 sec

In general, therefore the MLE for A fram a sample of size » is
5 12 p
T n 121 !
EXAMPLE 5.4

A triaxial specimen of saturated sand is subjected to cyclic verticat loads with 4
stress amplitude of 4200 psfin a laboratory test. The number of load cycles applieq

until the sand specimen fails has been recorded for five independent specimeng as.

follows.
25, 20, 28, 33, 26 cycles

Suppose the number of load cycles to failure for the sand is assumed to follow g log-
normal distribution; estimate the parameters 2 and ¢ by the maximum likelikoog
method.

Let us first derive the general expressions of the maximum likelihood estimalors } -

and { fora log-normal distribution. Fron Lq. 5.7, the likelikood function is given by

. ! 1/ x, — A2
Lix FEITI 7 )‘y .Z = B —— ] e —
i 0 = | gmo [ (25 )

R Ao N e U
(T () o] =5 3 o o]

The presence of expenentials suggests that it is more convenient Lo work with the
logarithmic form; thus
k
Indl(x, . o oxn 2, O —ninv2z —aln i — S Inx -
fand

1 ki
.
e Z (In x; — A)*
o o ) 2{ il
To maximize the likelihood function, we have

21In L i .
~L]n~1~ == Ny, — A) =0
az &
eln L i i 5
e e = .\4‘ Voo A & £
¥ o+ f-" (Inx;, — 2) 0

Since £ £ 0, the solution 1o these two simultaneous cquations yields

and

g
" eters as
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gbstituting the values of the observed data, we obtain the MLE of the param-

4= (025 + 1020 +In 28 + In 33 + In 26) = 3.26

e H(n 25 3268 + (n 20 = 3.26)° + (In 28 — 3.26

+ (In 33 — 3.26)% + (In 26 — 3.26)%] = 0.027

5.2.2. Interval estimation of the mean

: How good is the estimator X? 8o far, we have discussed the point
" ostimates of the mean and variance; such estimates, .however, do not convey
. jpformation on the degree of accuracy of th‘ese estimates. For this reason,

the interval over which a parameter may lie often is used to supplement

the point estimate {a single number) of the same parameter, SBuch intervals

 are called the conjfidence intervals, and the method of estimation is known
a5 interval estimation.

Since we are using the sample mean & to estimate the population mean
-, the accuracy of this estimate is naturally of concern, We examine this as
il

 follows.

First of all, for a random sample of size n, the values xy, o, -+, ¥
~can he eonceived to be the respective sample values of a set of independent
“random variables Xy, X, +++, X,. Moreover, in random sampling, the
density functions of X, -+, X, are individually the same as that of the
-population X; that is,

Fei®) = fxp(e) = ++ = fx (@) = fx(2)

- Then the sample mean is also a random variable

x=1%x (5.9)

L

* Its expected value is

E(X) = E(:% §X) = gE(Xs)

S |

Hence

u (5.10)

u 1
E(X} = ;?) *

The expected value of the sample mean X, therefore, is equa}l to the
population mean; in view of this, X is said to be an “unbiased” estimator of
- the population mean u.

Since X is a random variable, it also has a variance

" 1 n
Var(X) = Var(;li ZX;) = ;@V&r( ZX:‘)

Pl feal
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fy (R}
3

H

Figure 5.3 Distribution of sample mean

where Xy, Xy, ++ -, X, are statistically independent (in random sampling)
hence

H

T

o1
Var(X) = - 2. Var(X)) = =

Wl

H

Therefore, according to Kgs. 5.10 and 5.11, the sample mean X hag g
mean value g and standard deviation o/ /3. These results apply so lomg
as the X's are statistically independens and identically distributed us
X; that is, if random sampling is assumed. In praclice, of eourse, 1t is dif-
ficult: to verify whoether the assumptions of random sampling are satisfied;
it I important, however, that every effort he made to ensure that samples
taken from a population are sufficiently random to permit the use of the
results derived above.

In Chapter 4 we saw that the sum of % independent normal variates is
also a normal variate. Hence, if the underlying population X is Gaussian,
the estimator X is also Gaussian. Morcover, if the sample size n is sul-
fictently large, the sample mean X will be approximately Gaussian (hy
virbue of the eentral limdt theorem), even if the underlying population is not
Gaussian,

Therefore, for large sample size #, we ean generally assume that X has a
nermal distribution N (4, o/ /0. As the sample size » Inereases, the dis-
tribution of X becomes narrower as illustrated in Fig. 5.3, indicating thai
the quality of the estimate & improves with the sample size ». In other
words, as 2 increases the sample mean & is more likely to be eloser to the
population mean g In the extreme case, as i — o, F > p.

Confidence interval with known varignee. Consider first the case
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F
5.2

., Jich there is prior knowledge of the variance or standard c.lcvia,tic?a‘l. of
e sulation, and only the mean value is to he estimated, This condition
(he i}(:(l;i,ixn(zs (‘.]’3(!()1]!1{.(’.1‘{‘3(1; for example, in electronic distance measurement,
the standard crror is fairly constant for a given type of (\.(1\}%})111{5:‘1‘5; in‘ such
] CRECS, therefore, ¢ may be assumed to be l(nl{)\\'n from previous experience.

" We have just seen that for large S'L}mple size, the Eample mean X c?,‘n b‘c
deseribed with the normal dis.tributlon Ny, ¢/ n)_; By a simple tr a..n?.sm
jormation (see Example 4.1}, it can be 851()\1'1} juhat (X — p)/(a/ LD 151
gandard normal varlate. Hence the probability that} (‘X = w)/ e/ /1)
it be in a given interval, for example, between 2 1.96, is given by

i SOIT

will

PL—1906 < pi < 1.96) = ${1.96) — ¢(—1.96) = .95
a/ V'

For the concrete data in Example 5.1, if the standard deviation o is
wnown {for example, through years of experience and testing) to be equal
to 0.65 ksi, the preceding statement becomes

_M__ <

I.QGJ = 0.95
0.65/ /25

P[-0.255 < X — u £ 0.255] = 0.95

* Physically, this statement implies that_before obtaining the test_resuits,
it is expeeted that the sample mean X will lie within 0.255 ksi of the

actual mean g with 959 probability. After the test results are obtained,
" which give & = 5.6 (from lixample 5.1), the equation above yields

Pl~02585 <56 —p= 0.2557 = 0.95
or
P 5.6 ~ 0255 < u < 5.6 4 0.255] = 0.95
Thus
P [5.345 < u < 5.855] = 0.95

This appears to imply that “the mean value u of the erushing {;‘tlrength of
the conerete Hes between 5.345 ksi and 5.855 ksi with probability 0.95.”

Strictly speaking, however, this implication is not correct. In the first
place, in the classical approach the population mean g is a constant, not a
random variable. Moreover, if another 25 concrets specimens were tested,
the probability that g will lie in the same interval may well be different.

Alternatively, if different sets of observed data were used to construct
similar 959, probability intervals, we may say that on the average 95%
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Density
3
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Figure 5.4 Density function of (X — p)/{e/V7)

of these intervals will contain the population mean p. Hence, in a genepy) -

case, if we denote {1 — a) as the specified confidence level, and = koo ag
the values of the standard normal variate with cumulative probability
ievels a/2 and (1 — «/2), respectively, as shown in Fig. 5.4, we may write

, X =
P (“‘“ kaj < v !’ifa:-z) =1—a (5.12)

Upon rearrangement and substitution of the observed sample mean i,
Itq. 5.12 hecomes

IJ ..: - i\':u ""“g po < .‘1 " ‘iii = -
(1 /2 \/” < M X + .Tta,'z \/?t) 1 o

Aore properly, then, the interval estimated on the basis of a single sample

of size n should be interpreted as follows: “There is a confidence of (1 ~ «)
that the estimated interval eontlains the unknown g Thus such an in-
terval is called the (1 — &) confidence tnterval for the mean g, and is given
by

o
'\_/’,E ;& ke v];)

It should be emphasized that the confidence intervals so obtained would
be exact for normal populations with known standard deviations. How-
ever, for nonnormal populations, confidence intervals of 15q. 5.13 are only
approximate; the accuracy of the approximation, however, will increase
with the sample size n.

The following steps summarize the general procedure for establishing the

<nu>1—-cr = (j s ka,’i (513)

1.
2
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conﬁdence intexrval of the mean g when there is prior knowledge of the
ggandard deviation e,

Choose the confidence level (1 — a).

Determine the value k.p from a table of normal probability (for
example, Table A1 In Appendix A); specifically,

44
.?\'}u,'z = @1(1 - 2")

' 3, Apply Iig. 5.13 using the sample mean & estimated from the observed

sample of size n, obtaining the (I — &) confidence interval for the

mesi
T iy
. = _~‘ e ],ﬂ, } & -+ —= ]a
o (1 Vo ! ' ’2)
EXAMPLE 5.5

The daily dissolved oxygen (IDO) concentration for a stream at a statjon has been
recorded for 30 days, The daily level of DO concentration is known to vary with a
standard deviation of ¢=2.05 mg/l. From the sample of 30 observations, 1he sample

_mean is caleudated to be £ = 2.52 mg/l. Determine the 999, confidence interval for
© tae mean daily DO concentration.

Following the steps outlined above, we obtain
(a1 — o =099 or « =1 —099 =001
(by from Table A1, k 445 = ©1(0.995) == 2.58

a 2.05
— Ky == e 258 = (L.965
‘\/n fa '\/30
The 9%, confidence interval for s, therefore, is (2,52 - 0.965; 2.52 4 0.963) or
(1.56; 3.49) mg/l.
Similarly, we obtain the 959%, confidence interval as follows:

k gz = ©10.975) = 1.96

©)

and,

[e2
ek ey = 0.733
'\/]l .025

Hence, the 959%, confidence interval is (1.79; 3.25) mg/l.
Therefore, if the distribution of DO concentration is Gaussian, these resulls
would be the exact 999, and 95%, confidence intervals. If the underlying distribution

is not Gaussian (or is unknown), the results obtained above would be approximate
confidence intervals.

Comparing the 95% and 9%, confidence intervals computed in Example
4.5, we observe that the 999 confidence interval is larger than that at the
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fT(H

f=0, N(D, )

0 i

Figure 5.5 Siudent -distribution

959, confidence level. This 18 reasonable beesuse a larger interval is mare
likely to contain g than a smaller one.

Farthermore, we observe that the confidence interval for the mean de.
pends on the standard deviation ¢ and on the sample size n. From 18y,
5.13, it is clear that as ¢ decreases or as n increases, the confidence intervg]
becomes narrower for the same confidence level (1 — ). This means that
smaller population variance or larger sample size would inerease the
accuracy of the sample mean as the estimator of the population mean,

Confidence interval with unknown vaeriance. In general, the value
of o 18 not known and must be estimated using Iiq. 5.8. The foregoing
procedure for determining the confidence interval for w may still be used
when the sample size » is large. That is, when »n s large (for instance,
> 20), the sample variance 5* is a good estimator of the population variance
o® (see Section 5.2.4). Consequently, in such cases, using s for ¢ in Eg.
5.13, we obtain the confidence interval as if o is known. It should be
emphasized, however, that the confidence intervals so obtained will he very
appreximate if # 1s small (for example, < 10).

When there is no prior knowledge of the population variance, an exact
confidence interval for u can be determined if the underlying population
is Gaussian, In this ease, the probability distribution of (X — p) /(8//i}
Is required. This can be shown (for example, I'reund, 1962) to have the
t-distribution (or the Student’s t-distribution) with (n — 1) degrees of
Jreedom, whose density function is

SRSTRAVE o f)f e <l (514

) = vy !
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§ee

qere f is the degree of freedom. A family of t-distributions with various
_ywhere ¢

yalues of fis shown in Ifig. 5.5, It may be observed that the {-distribution

has & hell-shape density function similar to the normal curve and is sym-
. L ¢ ;

petrical about the origin. For small values of f the density function of the
] . p ! 1 1 i - &) Ay e
, distribution is flatter than the standard normal distribution; however, as
f inereases, it tends toward the standard normal distribution, as illustrated

i Fig. 5.5.

(On this basis, therefore, we can form. the fgllowing probability statement
for the random variable (X - w)/(S/ VADE
X
.P (—ia,'g,n._l < —“‘—“'g S tc!,ﬂ'ﬁ,n--l) = 1 - (515)
"

S/

where a1 has a similar interpretation as ke of 12q. 5.12. In the present

“ease, of course, fum .1 denotes the precentile value of the t-distribution

with {n — 1) degrees of freedom. In general, Ly, is the value of the
variate T at the cumulative probability (1 - «/2), as shown in Fig. 5.6.
Values of fayn, s are tabulated for various probability levels p=(1— «/2), with
different degrees of [reedom in Table A.2. Rearranging the terms in Eq,
5,15, the exaet confidenee interval for the mean (of Gaussian population),
therefore, is

) s s i
(Uhma = & — Lo 1/73 M ":! (5.16)

tr(0h

Unshaded Area=!-a

t
_10/2' ! 10/2- f

Figure 5.6 {1 — o) Confidence interval mn f-distribution
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where & and s are the sample mean and sample standard deviation, # is the
sample size, and (1 — «) is the speeified confidence level.

EXAMPLE 5.6

Suppose that the 30 observations of daily DO concentration presented in Exampl,e :
5.5 give a sample mean % =2.52 mg/l and sample standard deviation s = 2.08 mgjl,

Determine the confidence interval for the population mean g,

The number of data points is 30; hence, (¥ — )/(S/V) has a -distribution wigy,

JS=n—=1=29 degrees of {reedom. If a 999, confidence level is desired, o -

1~ 0.99 = 0.01; and («/2) = 0.005. From Table A.2, with [ = 29, we obtain unde;

the column lor (1 — «/2) = 0,995,
farmae = I gog 00 = 2.756

Hence the 999, confidence interval for the mean daily DO concentration is

2,05 205
Mgy =252 = 2756 S5 252 4 2756 S | = (1.49; 3.55) mg/|
000 ( V30 V30 &

This is a larger interval than that obtained in Example 5.5 of (1.56, 3.49) mg/fl, which
was obtained assuming that the standard deviation is known. This is (o be expected,
since not knowing the value of o introduces additional uncerlainty; hence, 1o
maintain the same confidence fevel, a wider interval js required than if o is known,

One-sided confidence limit Jor the mean. The confidence interval
established above is called o tfwo-sided confidence inferval, because it in.
chudes the upper and lower Himits that bound the value of the population
mean p. There are instances, in practice, in which only the lower limit
or the upper limit is pertinent. In such cases, we would be interested in
the ene-sided confidence mal for the mean w. For example, in the ease of
material strength, or capacity of a highway or of a flood channel, the lower
limit of the mean x will be of engineering interest,

For such purposes, the (1 — a) tower confidence limit, denoted < B e
means that the population mean g will be larger than this limit with »
confidence level of (1 — «). Assuming prior knowledge of o, such a limi
Is obtained by forming the following probability statement for the standard
normal variate (X — u)/{o/ /)

{5.17)
where 1 — o is the specified econfidence level, and ko = @7'{(1 — o). Re-
arranging the terms in Iig, 517, we have

P (,u. > X - Fe U“) I (5.17a)
Vo

Sffence b

— -

. Cs})CCU

als sd

S and

AT @ 996
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the {1 a) lower confidence timdt for the mean u is

< ) g (’E — ka \;n) (5.18}

st results for 100 randomly selected specimens of 1-cm-diameter A36_steel s.how
Tes he sample mean and sample standard deviation of the ylg‘ld suen.glh’ are,
ively, % = 2200 kgf {(kilogram force) and s = 220 kgf. For specification

2 EXA MPLE 5.7

hﬂ{ H

poses, the manufacturer is required to specify the 959 lower conﬁ.d‘ence hnlnrlt
P;‘“llhcllmzﬁan vield strength. Because of the large sampie size (n = 100), assume tha
0 risfactorily given by s, which is 220 kgf.

Wwith

1 —a =095, o = (05

k gn =7H095) = 1.65

- The fower confidence limit, therefore, is

220

o
T o fo e = 2200 - 1,65 ——
X ka ‘\/” \/100

== 2164 kgl

i : i san yie y il be at least
 In other words, it is 95%, confident that the mean yield strength will be at le
o oated kel

Conversely, there are situations in which the upper confidence imits are
pequired. IFor example, in determining the wind load on a strueture, we

would like to state with a high degree of confidence that the ]1’1(“21-1} i\\\').nlt%
“tond will not exceed o certain limit, In such a case, the upper 75,‘.{)11.1;1(.1 (;]n(:t
: limit on  is desired. Following the same ]‘)i'(’)(‘,(’,_(i.lli‘(.‘, as that of g 5.17, it
S pan be shown that the (1 — o) upper confidence imil is

(4 D1 = (L o+ b "{;;) (5.19)

i i sulation standard deviation is
17 the sample size » is small, and the population bhl-ll(} 1_}](1 ution 4
not known, the =distribution should be used to determine the correspon
g J

] ini his hasis, the appropriate con-
g upper and lower confidence limits. On this basis, the appropriate ¢

~fidence limits are as Tollows:

{1 — &) lower confidence limit

5 .
= 5.20
< 'U’) 1-e & bt \/.}u.'.- ( )
{1 — ) upper confidenee Himit
§ o
- _l. (‘,)‘21)
{}.L >1,,,(, X "{ ta.n---l ’\/“
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It should be emphasized that the confidence intervals given iy I
513 and 5.16, and the one-sided confidence limits of Fgs. 5.18 thr(_)ugl
5.21, for the population mean u are exact if the underlying population i::
Gaussian. Iowever, for practical purposes, these results are elpli!]ica]:,}e
to non-Gaussian populations if the sample size is at least moderately larg,
(for example, n > 10}; for this reason, the preceding equations may by,
used to determine the (approximate) confidence intervals and limits
irrespective of the distribution of the underlying population,

(]s_:

of 4

EXAMPLE 5.8

Table E5.8 shows data for storms and associated runoffs on the Monocacy Rive
at Jug Bridge, Maryland (data from Linstey and Franzini, 1964). '

(a} Compute the sample mean and sample standard deviation for the precipitatioy,
and runoff, based on the data given in Table £5.8.

(b) Using the sample variance in place of the corresponding population vari
determine the 99.9% confidence interval for the mean precipitation. Also dete;
the corresponding 99.9% upper confidence limit.

ange,

Table E5.8, Precipitation and Runoff Data

Storm no, Precipitation (in.) Runoff (in.)
i 1.1l 0.52
2 117 0.40
3 1.7 0.97
4 5.62 2.92
5 1.13 0.17
6 1.54 0.19
7 319 0.76
8§ 1.73 0.606
9 2.09 0.78

10 275 1.24
11 1.20 0.39
12 1.01 0.30
13 1.64 0.70
14 1.57 0.77
15 1.54 0.59
16 2.09 0.95
17 3.54 1.02
18 137 0.39
19 115 0.23
20 2.57 0.45
2l 3.57 1.59
22 5.1% 1.74
23 1.52 0.56
24 2.93 1.12
25 1.16 0.04

Mine

s Sol"ﬁ””

(a) Let x = precipitation {in inches); and y = runofl (in inches),

5.2 CLASSICAL APPROACH TO ESTIMATION OF PARAMETERS

X; x.iz Yi ),12
1.1t 1.23 0,52 0.27
117 1.37 0.40 0.16
1.79 3.20 0.97 0.94
5.62 31.58 2.92 8.53
1.13 1.28 Q.17 0.03
1.54 2,37 0.19 0,04
3.19 10.18 0.76 0.58
1.73 2.99 (.66 0.44
2.09 4,37 0.78 0.61
2.75 7.56 1.24 1.54
1.20 1.44 0.39 0,15
1.01 1.02 0.30 .09
1.64 2.69 0.70 0.49
1.57 2.46 0.77 0.59
1.54 2.37 0.59 0.35
2.09 4,37 0.95 0.90
3.54 12.53 1.02 1.04
1.17 1.37 0.39 0.15
I.15 1.32 0.23 0.05
2.57 6,60 .45 0.20
3.57 12,74 1.59 2.53
5.1 26,11 1.74 3.03
1.52 2.31 0.56 0.31
2.93 8.58 i.12 .25
1.16 1.35 0.64 0.41

53.89 153.39 20.05 24.68
% Thus
: . 5389 .
X = 5ET = 2.16 in.

e
8y =

1 ;
55 = 2% [£33.39 — 25(2.16)°] = 1.53

[.24 in.

N
2005 0.80 in.
25

|
2

y [24.68 — 25(0.80)"] = 0.36

8y == (LO0 N,
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(b) With & = 2.16, and assuming oy = &, = 1.24, the standard deviation of ¥

0y 1.24
=t = = (1,25
[ v 5

Although the precipitation is not Gaussian (see Example 6.3), X may be 485Umeq

be approximately Gaussian since the sample size is relatively large (n == 25). Hep !

according to Eq. 5.12, the 99.9%, confidence interval for the mean })1'ecip§1ali0nc.’
is

e e oy
Gexd pn (" £ goos Verl &k gngs ““_*\/55)

i

[2.16 — 3.29(0.25); 2.16 + 3.29(0.25)]
== (1.34 in., 2.98 in.)

whereas the one-sided upper 99.99%, confidence limit on the mean precipitation g

7 -
LY gop = & £ gy e = 2.16 4 3.09 x 0.25 = 2.93 in,
(1) 09 601 Vet in

EXAMPLE 5.9

(a) In a traffic survey where speeds of vehicles are measured, it is desireq o

determine the mean vehicle speed to within £1 kph (kilometer per hour) with 49/
confidence. From a preliminary study, the standard deviation of the vehicle speed i;

found to be 3.58 kph. Assume that all observatiops are independent; determine the ;

number of observations required.

{b) I1 1530 observalions were taken, what would be the confidence level associated
with the interval of £1 kph of the mean speed 7 Assume that the standard deviation
of vehicle speed is stifl 3.58 kph.

Selution

{(a} Let » be the number of observations required. The confidence interval js -

given by % 4 ka,g(a,’\/'ﬂ), where o is the known standard deviation. For a 999
confidence level, o = 0.01 and Ky == k g5 = 2,58, Therefore, selting
o 3.58
Kypg e = 258 X e == ]
Vi Vi
the number of observations required is
#o= (2,58 x 3.58)% = 85

(b) I 150 observations had been taken and the same confidence interval were
desired, we would expect the confidence level to increase. In other words, the value
of & would decrease. Setting

by X o8 e |
ale \/*1-3"6
we obiain
/156
Jeyp = AV 343
12 T3

5.2

m
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g =1 — B(3.43) = 1 — 0.99969 = 0.00031

‘The confidence level, therefore, is

I —e=1—000062 =0.99938 or 99.9389%

5.2.3- Problems of measurement theory
One of the major applications of point and interval estimation is in the

sheory of measurements (Parratt, 1961; Barry, 1964). Problems involving

easurements require estimation of a fixed (but unknown) quantity, which
s therefore analogous to the estimation of the unknown population mean

s . . .
In measuring, for instance, a distance §, several (for example n) measure~

ments may be taken constituting a sample of size n. The object then is to
estimate the actual distance é from the sample measurements* dy, dy, -+, d,.

Point and interval estimations then may be used to estimate this true
distance (not its mean value). In this regard, & is analogous to u; hence

i
30(— B
d
4 = 186.76
25— 5 = 1,94

20

182 184 186 188 190 92

Figure 5.7 Histogram of mensured distance (after Bachmann, 1973)

*Observed measurements will, in general, contain two types of measurement errors,
_namely, random errors and systematic ervors (Parratt, 1961; Barry, 1964). It is assumed
here that the sample measurements have been adjusted for systematic errors.
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the methods developed for estimating the mean g (which is a CONstayy
an be used to estimate the distance § (also a constant). In Partic)y,
the point estimate of 5 iz !

In other words, a series of measurements dy, day, + o+, d, are presumeq

be the sample values of the independent random variahles Dy, Dy, "
representing the populations of possible measurements, so that the pog,
estimator of § ig

i

t

- I &
b= 2. (5.23)
S5
with expected value
anl
. 42
Var(D) o - (5.25)
i
where
1 " . -
82 = i Z {d; — d)?
-1

fen]

In measurement theory, the standard deviation of D, that is, V' Var
{(s/+/n), is known as the standard error.

Implicit in Kgs. 5.22 through 5.25 are also the assumptions of random
sampling; namely, in this ease, that Dy, Dy, +++, Dy, are statistically inde-
pendent and are identically distributed or oy = fo, = -+« = {5, More-
over, these distributions are invariably assumed to be hormal, as supported
by observations (see, for example, Mg, 5.7).

It follows then that the variate (D — 8)/(S/+/7) has o t-distribution
with (n — 1) degrees of freedom: henee, the basis for the confidence inter-
val for § is

"D e

P( J BP0 )—1 :
af?,m—1 ,S/’\/’-HA 2 bt m—1 = 43

and thus the (1 — @) confidence interval for § is

e = (@ = ot = 5 @+ laps (5.26)
\/ t \/ 1

When a funetion of one or more distances {or geometric dimensions)
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5.2 [, AN

volved, the value of the function is usually estimated on the basis of
3 1 ' 1 1 3T 2 0 Fled e g
3 an measured distances, That is, if a function of several distances

he W )
b cev, 1l 38

: Iy by !

{= Z(Eh 12, "',lk)

chiclk &, By, -+, I are cstimated, respectively, by the mean measure-
\ . - - v . ‘u . . . . . b
) ot by, b <+ 0, Iy, then the point estimator of ¢ (using the approximation
ments iy

Cof B 4.43) 13

Z e Z(Iny Ly~ oy L) (5.97)

3 v L il i2hS . ‘ . ot .
L here Lo 1s the estimator of I; in accordance with 1q. 5.23. The estimator
v WG . Ky L
- 7 therefore, 1s also a random variable with
A

B(Z) 2 Z[E (L), B(Ia), «++, B(Le) ] = ¢ {5.28)

- nd, in view of the errors in Ly, the standard error in Z, assuming inde-
A 7T 13 ] 3 he 1 i Y

)Lnamt Li, Ly, « -, Ly, therefore, is obiained (applying Eq. 4.44) from
o pe ,

VarZ) & 3 (3})2 7% (5.29)
o \oL;

: e e { spree?? asurement theory.
< which is known ag the “propagation of errors” in measurement theory

Thenee, assuming Z to be Gaussian® with mean ¢ and standard deviation

1 '_ Thus the {1 — «) confidence nterval is

(g’)lﬁa = (5 — kapp oz, 2 Kas G‘z) (530)

where z = Z(h, by, <+, b

To clarify these, consider the following examples from surveying.

“EXAMPLE 5.10

The straight-line distance between two geodetic stations A and B is measured with

an electronic ranging instrument called a felferometer. The following are ten

H Ty o v ey 3 v ail 1 " [ ".

“* This assumpiion would be consisteni with the first-order approximation lf‘]uq.r :}.27 is

* linear; however, for nonlinear functions, this assumption would not be \.fah.(l. The es-

Lmabors Dy, Le L arve approximately Gaussian by virtue of the central limit theorem;
IR y Aoty e g Mk di A

{5 hence Z will not be Gaussian unless 19g. 5.27 is linear.
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independent measurements of the distance:

(1) 45479.4 m

(2) 45479.6 m

{3) 454793 m

(4) 45479.5 m

(5) 45479.8 m
(a) Estimate the true distance o,
(b} Compulte the standard deviation of the measured distances,

(¢} Determine the standard error of the estimated distance.
{d) Determine the 2-sided 90% confidence interval of the actual distance &,

(6) 454792 m
{7) 45479.6 m
(8) 45479.5 m
(9) 454793 m
(10) 45479.1 m

Solution
(a) Estimated distance,
. 1
d == 7 ASAT9.4 + 45479.6 + -+ 4 45479.1)

= 4547943 m
{b) Variance of the measured distances,
§% == 1H(A5479.4 — 45479.43)% + (45479.6 —~ 45479.43)*
A4 e A (454791 - 45479.43)%)
= £10.401} = 0.0445 m?

Hence the standard deviation is § = 0.21 m,

(©) According 1o Eq. 5.25, the standard error of the estimated dislance is
. o]
Of = e o= 04;1- = 0.0664 m

Vi V10

(d) With f=pn —1 =9, and « = 0.10; f.os5 = 1.8331 from Table A.2, Then
using o = 45479.43 m, and s = 0.21 m, we obtain the 90%; confidence interval for ,

b 0.21 0.21
{0} gp == | 45479.43 — 1.833( =2 ; 4547943 4+ 1,833 —=-
" [ («/ 10) (V 10”

(45479.31; 45479.55) m

EXAMPLE 5.11

The area of a rectangular tract of tand is being considered, The sides of the
rectangle are measured several times, with associated statistics summarized as
follows (see also Fig, ES.11).

It

No, of independent Mean

Length medasurements measurement Sample variance
b 9 60 m 0.81 m?
B 4 70 m 0.64 m?
C 4 Am 0.32 m?

Determine the 95%, confidence interval of the actual ared of (e tract,
!
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_ Solution

In this case, the area is

A=(B+OD
according to Eq. 527, the area is estimated by
" A=@+0Ob

::?Substituting the mean measured distances, the estimated area therefore is
A = (70 + 30)60 = 6,000 m?

According to Eq. 5.29,

ot = Drog? + Dlog® + (B + CPop?

4
= 3600(0.16) + 3600(0.08) + 10,000(0.09)
= 1764 m*

. Thus, the standard error of the estimator A, is
gy = 42 m?

Finally, using Eq. 5.30, we obtain the 95%, confidence interval for the area 4 as
- follows:

o o2 spt
- (60)2(&) + (60 (~§-) + (100)2(—9—)

k_ogﬁ = }.96

P(-—i.% < @‘;—-—;A < 1.96) = 0.95

'3:'.. Thus the required confidence interval is
. (A)5 = [6000 — 1.96(42); 6000 -+ 1.96(42)]
— (5916.9, 6083.1) m?
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i
‘The problems illustrated in Examples 5.10 and 5.11 are quite

g f mAY he asswmed, on the basis of the eentral limit theorem, to have a
in surveying, photogrammetry, and geodetic engineering. '

5.0

Com m ()1.

Ty

-

sl distribution with the mean and varianee of lgs, 5.32 and 533,

5o . .
] o confidence level of (1 — o),

5.2.4. Interval estimation of the variance pen, 4t

t

, . - . L. : B 82— §
How good is the estimator 887 Using an approach similar 4, i P (Wi{'"‘;g < k:/\’ S < A-,a,@) =] — (5.34)
establishment of the confidence interval for the population meap ihL ar ()
g - . . ¥ i} (
confidence interval for the population variance ¢ may also he devel

l:)]jgd‘ :
. 5.3)

re gpin I3g. 5.33 can he evaluated using the { ourth sample moment, or

For this purpose, we first observe that the sample variance (see g whe

]- n
o= D (g = ) (5.35)
i

=1

. 1 H . 3
B = 2 (X - X ;
no— 1 ‘\? ) (5.31)

Henee the (1 — a) confidence interval for the population variance {when
Jarge) may be obtained as

(0 =0 = [8 = ko VVar(8D; & + kap VVar(59 7 (5.36)

I¢ the population is Gaussian, the varianee of 5% Is {Treund, 1902)

is a random variable, with expected value

118

i = a| £ v -]

o1 o

ot {5.37)

i==]

1 . -
- — E[ ST =) = (X - g }] Var(§) =2

sphence, the corresponding confidence interval becomes

1 e ) . he

= E{X;— )t — al{X — p)*
i i

W2 S'Z )
1 2 -y = - e oy , B (538}
G (1 ke V2 (e — 1) 1 — kap V2/ (o — 1)
but
B(X;— ) = ¢ g _
and it can be shown that | EXAMPLE 5.12
‘2 For the concrete strength data of Example 5.1, we had s* = 0.44 and n = 25.
E(X’ )t = T Assuming the strength of the concrete to be a normal variate, we obtain the 959,
" -4 confidence interval for its variance o®, approximately on the basis of Eq. 5.38, as
Hence 1 follows:
L 1 [ & ot . 0.44 0.44
BFiS2Yy = —— 2 gp e e | = P 5. S (o) g = S .
(3 = L @ T nJ 7 (5.32) ’ (1 +1.96V2/247 1 — !.96\/2/24)

i

7 {0.28; 1.01)
For this reason, Kq. 531 is an unbiased estimator of of as we asserted

warlier in 19g. 5.3. Em.ct. cm-aﬁde{u:e“ iim:‘,t‘s ‘of ¢ f o‘r normal pf)pr.a.lution. Thf-?.‘ dpplﬁo}}l}
The variance of 82 i given (Hald, 1952) by L mations given in Igs. 5.36 and 5.38 can be (?1-15120 3){)})1}‘ ‘\f\'hgu. n s %Illl‘]: M
- “the population is normal, however, exact confidence limits can e obtained;
Var($) = o ( My ‘”""3> (5.33) othe l')nsi's_for 311(1?10;::L(:L estimates is as follows.
no\ot on— 1 Rewriting Eq. 5.31, we have
where py = E{X — w)tis the fowrth central moment of the population

{n— 1)8% = Z (X =) = (X =)}

random variable X. It may be observed that ag n inercases, the varjance
of S decrcases.

n

> (X = ) (X - )

i1

Confidence interval for ¢. For large n, the sample variance of g

It
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feled

G.20

- !
o0 ¢} 20 30

Figure 5.8  Chisquare-distribution with different f

Dividing through by ¢% we obtain

(m — 1) 8¢ B i X — i : _ 2:: M ? s
--------- SR

first term on the right side of g, 5.39 is the sum of squares of n inde-

pendent standard normal variates; it can be shown, by generalizing the

result of Example 4.6, that this has a chi-square distribution with =
degrees of freedom (to be denoted »*). Similarly, the second term on the
right side of Eq. 5.39 is also the square of a standard normal variate and
therefore has a chi-square distribution with one degree of freedom. More-
over, it can be shown (Hoel, 1962) that the sum of two chi-square variates
with p and g degrees of freedom s also a chi-square variate with (p + ¢)
degrees of freedom. On these bases, therefore, (n — 1)8%/0? of 10q. 5.39
has o 2. distribution; that is, a chi-square distribution with (n — 1)
degrees of {reedom.

in general, the density function of the x} distribution with f degrees of
freedom is given by

Fele) = ———ne -l — 1) el

> 5.40
2T (§/2) 20 (540)
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guch & distribution is shown in Fig. 5.8 for different degrees-of-freedom f,
5 would be expected, by virtue of the central limit theorem, the x%
: digtribution approaches the normal distribution as f — « ; this may be ob-
orved also in Fig. 5.8. Because f = n — 1, this gives us a basis (albeit
gude) for determining the sample size n necessary to ensure reasonable
gpproximations of Eqgs. 5.36 and 5.38. Visually, from Fig. 5.8, it appears
thet # = 25 may be sufficient sample size to permit the applications of
fgs- 5.36 and 5.38,

* 1f the population is Gaussian, the upper confidence limit for the variance
2 aceording to the foregoing chi-square distribution, is given by
P [(n — 1) 82

T 2 Ca.ﬂ—-l.] w1 o

. (5.41)

i where €an-1 denotes the value of the x%_; variate at the cumulative prob-
i gbility of a; that is,

P(C S Ca,“__l) =

ke jllustrated graphically in Fig. 5.9. Values of ¢, are tabulated in
i Table A3 of Appendix A for specified values of @ and n — 1 = f,

i Then the exact (1 -- «) upper confidence limit for o* of a normal popu-
. -::~": lation 18

(0 >pg = M (5.42)

Co H=1

Although two-sided confidence intervals for ¢ may similarly be de-

: 1.1-'ve10ped, the one-sided (upper) confidence limit of Eq. 5.42 is more useful

where X are presumed to be normal, and thus X is also normal. Then the 1: i the case of variances.

| EXAMPLE 5.13

For the DO data in Example 5.5, we had s* = 4.2 and » = 30. If a 95% upper

7 ':i::-_conﬁdcncc limit on o2 is desired, then from Table A.3 (with o = 0.05) we obtain

feled

~3pe-
<

Figure 5.9 Chi-square distribution with (n — 1) degrees of freedom
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¢ " Cgs,ng = 17.708. Hence the (upper) confidence limit

0 n—1

for the variance
of
18 DO

29 x 4.2
17708

5.2.5. Estimation of proportion

(‘72> 05 T = §,89 (Fﬂgﬂ)z

In many engineering problems requiring  probabilistic fommlm.i{)ns
the necessary probability measures must he estimated on the hasis 0}
experimental ohservations; for example, the probahility of hurrie
intensity wind occurring in a year, the proportion of vehicular ¢
making left turns at an infersection, or the proportion of embani
material meeting specified compaction standards.

In such cases, the required probahility may be estimated as the Pro.
portion of oceurrences (of an event) in a Bernoulli sequence (sce Sectigy,
3.2.3). Buppose that we have n sequence of 7 independent trials X, X 9 e
X, where every X, s a two-valued random variable ; specifically, X, =

ane.
aflie
N

or 0 denotes the oceurrence or nenoccurrence of an evend in the 7th tria],

‘Then the sequence X,, X g, =+, X, constitutes a random somple of siga g,

The probability p of occurrence of an event in a tyial is the parametey

in the binomial distribution. The mazimwmne lkelihood estimator of
probability can be shown to be

~ 1 - o
]) mr e X1 ‘1". 1 b S i

: E (5.43) "1 Figure 5.10 95% confidence interval of proportion {after Clopper and Pearson,
1 193)

In other words, the estimate of p is the proportion of ceeurrences among
the sequence of n trials,

Confidence interval for p can also be developed as follows, Observe first
that

w ‘[ n
BE(P) = EG ZX,) = = > E(X)
L L

but
B(Xd) = Upy +0(l —p) =p
Henee
" 1
L(P) = = (np) = p {5.44)
7
And
~ &,
Var () = pr 2 Var(X))
-
j_ n
== 2 LB(XY — B(X:)]
L

f— T

lis |
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e
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where E{(X%) = p. Thence,

_p(l~p)
- n

Var (P) = ;zl—zn(p — p%) {5.45)

Therefore the estimator P is centered around p with a variance that de-
. creases with the sample size n.

Tor large n, P will be approximately Gaussian by virtue of the central

- limit theorem; furthermore, the variance of Eq. 5.45 may be approximated
by

Var (P) o~ &;}“@ (5.45a)

where g is the observed proportion obtained from the sample data.
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Then the confidence interval f i i
nthe conhidence mterval for pois obtained from

Moen B la ¢ - 3 T i
, ki igure 310 is a graph showing the 95% confidenee interval for D as
unction of the observed proportion p for different sample size n )

EXAMPLE 5.14

In inspecting the quality of soil compaction in a highway project, 10 out of “

specumens inspected do not pass the CBR requirement. 1t is desired (o estimate 1

actual proportion p of embankment that will be well compacted (that is, me : o

refluu'eme_nt) and aiso establish a 959%, confidence interval on p > et CBR
The point estimate for p is given by Eq. 5.43 as r

Plogs = {0.8 ~ 1.96 \/_,* -5) 5 0.8 + 1.96 A/@_(L“ 0.8)
5 50

= {0.69; 0.91}

5.3. CONCLUDING REMARKS

fon of 8 vandon varshte e ot bty distibe
. _ able ma; r dedueed theoretically on the hasis
0'1 physical considerations or inferred empirically on the basis of observa-
tmna.! data. However, the parameters of the v{listribln,i(m or t}m"l'l]ﬂflll
descriptors (JTI(.‘l{-'LI‘l and variance) of the random variable must necessarily
il date e, e b of e ctmation based on
3 ? 5 arame estimation are
presented in this chapter; in Chapter 6 empivical and inferential methods for
dotﬂez'njlining probability distributions arve deseribed, ' "
(..3].1-1,335(7&1 methods of estimation are of two types—point and dnterval
est.m:uu;mzm. The common methods of point estimation are the method of
AT Likelihood and the method of moments: the former derives the
estimator directly; the latter evaluates a parameter by first o.slinwting the
n'mmentls (usually the mean and variance) of the Véll'}élt{! through the ecor-
responding sample moments. Interval estimation ineludes a dctorminﬁiion

i on the

bal

PROBLEMS 2

o the interval that contains the paramcter value with & preseribed level
of confidence.

1t ghould be recognized that when population parameters are estimated
hasis of finite samples, crrors of estimation are unavoidable. Within
the classical methods of estimation, the significance of such errors are not
oflected in the (point) estimates of the parameters; they can only be ex-

pressed in terms of appropriate confidence intervalg, Iixplicit consider-

. gtion of these errors is embodied in the Bayesian approach to estimation,
* which is the subject, of Chapter 8.

* pROBLEMS

51 In the measurement of daily disscived oxygen (DO) concentrations in a
stream, let p denote the probability that the DO concentration will fail below
the required standard on a single day. DO concentration is measured daily
until unsatisfactory stream quality is encountered, and the number of days in
this sequence of measurement is recorded. Suppose 10 sequences have been
observed and the length of each sequence is

2,5,6,4,6,6,8, 5,10, 1 (days)
(2) Determine the maximum likelihood estimator for p, and estimate p on
the basis of the observed data. .
(b} Estimate p by the method of moments. (Hint. Use the relations in
Table 5.1).

5.2 For the concrete cryshing strength data tabulated in Table ES.1 in Exampie
5.1, determine the point estimates for w and o by the method of maximum
likelihood. Assume that concrete strength foliows a Gaussian distribution.

53 The distribution of wave height has been suggested 10 follow a Rayleigh
density funciion,

[l =ttt 20
- 29

with parameter o. Suppose the following measurements on wave heights were
recorded: 1.5, 2.8, 2,5, 3.2, 1.9, 4.1, 3.6, 2.6, 2.9, 2.3 m.
Estimate the parameter « by the method of maximum likelikood.

54 Data on rainfzll intensities (in inches) collected between 1918 and 1946 for the
watershed of Esopus Creek, N.Y., are tabulated below as loilows:

1918—43.30 1925---43.93 1932—-50.37 1939—42.96
1919---53.02 19264677 1933---54.91 1940—55.77
1920---63.52 1927.--59.12 1934---51,28 1941—41.31
19214593 1928-—34.49 19353991 1942---58.83
1922--48.26 1929--47.38 1936---53.29 1943.--48.21
£923—50.51 1930--40.78 1937--67.59 1944—44.67
1924--49.57 1931--45,05 1938--58.71 1945—67.72

194643, 11

(a) Determine the point estimates for the mean g andg variance o%.
(b)Y Determine the 95%, confidence interval for the mean . Assume the
annual rainfall intensity is Gaussian, and o == s,
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5.5 Consider the annual maximum wind velocity () data given in P

(a) Calculate the sample mean and sample variance of V.

(b} Determine the 99%, confidence interval for the mean velocit
that the true standard deviation of ¥, o, is sutisfactorily given 1y
sample standard deviation s, Y the

(c) Assume (hat ¥ has a log-normal distribution: determine the
estimates for the corresponding parameters Ay and p.

roblem 3 o4

Poing

5.6 A structure is designed (o rest on 100 piles. Nine test piles were drivey .
random focations into the supporting soil stratum and loaded until {uj; .
occurred. Results are tabulated as follows. e

) ‘ Pile capacity
Test pile {tons)

oGO -] ChLh D B e
o0
o0

(a) Estimate the mean and standard deviati indivi i

: iation of the individual pile capaci

to be used al the site, o Apacity

(b) !:stabl}sh the 98%, confidence interval for the mean pile capacit
assuming known o = . y

() Det_ermine the 989, confidence jnterval for the mean pile capacity on the
basis of unknown variance.

57 The daif)f dissolved oxygen concentration (DO) for a location A downstream
from an industrial plant has been recorded for 10 consecutive days.

Day DO (mg/fl)

GO~ On B LRI
B2 B B e D D e
oA L b W) — S B

9
10

-
FEIF-N

(a) Assume lha.t the daily DO concentration has a normal distribution
N, a); estimate the values of x and o,

Y- Assupe
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(b} Determine the 95, confidence interval for the (rue mean .

(¢) Determine the 95%, lower confidence Hmit of x.

58 A river has the follewing record on the levels of floods that occurred each year
between 1960 through 1970.

Flood level (m)

Year (above mean flow)
1960 3.7
1961 23
1962 51, 3.5
1943 5.2
1964 4.7, 6.1, 5.2
1963 34,72, 1.5
1966 1.5, 3.6
1967 52, 14
1968 1.3, 45
1969 34
1970 44, 24

{a) Draw the histogram of flood levels at 1-m interval. :

(b) Draw the histogram of the ennuel maximum flood levels at 1-m interval,

(c) Based on the histogram, what is the return period for a 7-m flood ?

(d) Compute sample mean and sample variance of the annual maximum
flood.

(¢) Establish the 999, 2-sided coafidence interval for the mean annual
maximum flood.

() Assume that the annual maximum flood level has a log-normal distribu-
tion with the mean and variance computed in part (d); on this basis,
determine the return period for a 7-m flood of this river.

59 Froma set of data on the daily BOD level at a certain station for 30 days, the
following have been computed:

£ =35 (mg/l)
5% = 0.184 (mg/D®

Assume that the daily BOD level is a Gaussian variable.

(a) Estimate the mean and standard deviation of the BOD level.

(b} Determine the 99.5%, confidence interval for the mean BOD.

(c) If the engineer is not satisfied with the width of the confidence interval
established in part (b), and would like to reduce this interval by 10%,
keeping the 99.5%, confidence level, how many additional daily measure-
ments have to be gathered ? Ans. 7.

510 Suppose (hat a sample of 9 stee reinforcing bars were tested for yield strength,
and the sample mean was found Lo be 20 kips.

(1) What is the 909, confidence interval for the population mean, if the
standard deviation is assumed to be equal to 3 kips?

(b) How many additional bars must be tested to increase the confidence of
the same interval 10 959, 7 Ans. 4.
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(¢) Il the standard deviation is not known, but the 9 measuremenig yielg d
o

]
N (x, ~ 20)F = §4.5
funl

then what would be the 90%, confidence interval for the meap Viel
strength ? Assume that the yield strength is a normal variate, ¢
5.01 A 20-year data series for the annual maximum wind velocity ¥ for 4 city |
Hlinois yielded the following quantitics: o
& = 76.5 mph

20
2 (i = 5) = 2640 (mph)?

(23]

(a) Determine the sample standard deviation s,
(b) Determine the 95%, upper confidence limit for nye; that Is,

Pluy < Limit) = 0.95

assume op = s, from part (a),
{c) Assume that the annual maximum wind velocity is a log-normal variate
with g = 76.5 mph and op = sy from part (a), Estimate the distrj.
bution parameters Ay and £,

512 The height # of a radic tower is being delermined by measuring the hori.
zontal distance L from the cenler of its base to the instrument and the vertica)
angle f# as shown in Fig. P5.12, :

(a) The distance L is measured 3 {imes, and the readings are: 124.3, 124.2,
124.4 ft,

Determine the estimated distance, and its standard error. Ans, 1243 fr,
(.0577 fr.

{(») Theangle §is measured 5 times and the readings are: 40° 24.6°, 40° 250,
40°25.5', 40° 24.77', 409 25.2".
Determine the estimated angle, and its standard error. Ans. 40°25"
0164,

P
-
/
o
o
L

- %A
% h=3+00If1

| L

T -

Figure P3.12

Figure P5.13
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(¢) Estimate the height of the tower H. Assume the instrument is 3 ft high
with a standard deviation of 0.01 ft. Ans. 108.85 fr.

(d) Compute the standard error of the estimated height of the tower, o.

. 1.

(e g];fefrrgif:ftrlw 989, confidence interval of the actual height of the tower
H. Assume that ff is normally distributed about the actual height H.
Ans. (108.73 ft; 108.97 ft).

To determine the area of a rectangular tract of ianq shown in Fig. P5.13, the

sides b and ¢ were measured 5 times each. Following are the 5 independent

measurements made on b and ¢:

Side b Side ¢
(m) (m)
500.5 259.8
499.5 300.3
500.0 300.2
500.2 299.7
499.8 300.0

The area of the tract is computed as

Aeb &
where b and & are the sample means of the respective measurements. Estimate
the 959, confidence interval for the actual area A.

The following five repeated independent observations (mqasurements:) were
made on each of the outer and inner radii of a circular ring shown in Fig.
75.14,

outer radius ry: 2.5, 2.4, 2.6, 2.6, 24 ¢m

inner radius ry: 1.6, 1.5, 1.6, 1.4, 14 cm

Figure P5.14
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{a2) Determine the best estimates of the outer and inner radii
responding standard errors,

(b) The shaded area between the two concentric circles is computed 1y,
on the mean values of the measured outer and inner radii: n'udsed
A = =(#® — 7). What is the computed arca? Anms. /2.57 cm?. ey

(¢) Determine the standard deviation {(standard errory of the compulted
Ans, 0.819 cm?,

{d) If it is desired to determine the sample mean of ry within +0.07
with 99% confidence, how many additional independent measuremelc]m
must be made on r,? Assume that all measurements are independent 4 "
taken with the same care and skill. Ans. 12, and

» @l

5.15 The distance between A and C is measured in 2 stages: namely, 4B and fc as
shown in Fig. P5.15. Measurements on A and BC are recorded as follows:

AB:100.5, 99.6, 100.1, 160.3, 99.5 {t
BC: 50.2, 49.8, 50.0 {1

{a) Compute the sample mean and sample variance of the measured dis-
tances for 4B,

(b} Compute the standard error of the estimated distance of AB, that is, s=
R o o A L Ry
(c) Establish the 989%, confidence interval for the actual distance 45,

(d) M the distance AC is given by the sum of the estimated distances A# and
BC, that is,
AC = AR + BT
what is the standard error of the estimated total distance between 4
and C?
{c) Establish the 989 confidence interval on the actual length AC.

o

A B

od

Figure P3.15

d Cop.

al‘ea' :

6. Empirical Determination

gf Distribution Models

{61, INTRODUCTION

7he probabilistic characteristics of a random phenomenon is sometimes
- diffieult to discern or define, such that the appropriate probability model
peeded to deseribe these characteristics is not readily amenable to theo-
-~ yetical deduction or formulation. In particular, the funetional form of the
- gequired probability distribution may not be easy to derive or ascertain.
Under eertain circumstances, the basis or properties of the physical process
" may suggest the form of the required distribution. For example, if a process
iis composed of the sum of many individual effects, the Gaussian distribu-
_tion may be appropriate on the basis of the central limit theorem ; whereas,
" if the extremal conditions of a physical process ave of interest, an extreme-
" value distribution may be a suitable model.

Nevertheless, there are oceasions when the required probability distri-
bation has to be determined empirically {that is, based entirely on avail-

~able observational data), For example, if the frequency diagram for a set

of data can be constructed, the required distribution meodel may be deter-

* mined by visually comparing a density function with the frequency diagram

see Tor example, Figs. 1.5 through 1.7). Alternatively, the data may be

17 plotted on probability papers prepared for speeific distributions (see Section
= 6.2 below). If the data points plot approximately on a straight line on one

1i of these papers, the distribution corresponding to this paper may he an
. appropriate distribution model.

Furthermore, an assumed probability distribution {perhaps determined

i empirically as deseribed above, or developed theoretically on the basis of
- prior assumptions) may be verified, or disproved, in the light of available

dats using certain statistical tests, known as goodness-of-fit tests for distri-

- bution. Moreover, when two or more distributions appear fo be plausible
- probability distribution models, such tests ean be used to delineate the
= relative degree of validity of the different distributions. Two such tests are
2 commonly used for these purposes—the chi-square (x?) and the Kol-

mogorov-Smernoy (IK-8) tests.
261
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In practice, the choice of the probability distribution may alsg he
dictated by mathematical tractability or convenience, For example, Jy,
sause of the mathematical simplifications possible with the normal dish-j})u"
tion, and the wide availabifity of information (probability tables) A8800],
ated with this distribution, the normal (or fog-normal) distribution is
frequently used to model nondeterministic problems—at times, even whey
there is no elear hasis for sueh a model, Probabilistic information deriwd
on the basis of such preseribed distributions could he useful, especially whey,
the information is needed only for relative purposes.

6.2. PROBABILITY PAPER

Grraph papers for plotting ohserved experimental data and their COPTeRnaN .
ing cumulative frequencies (or probabilities) are called probobility papeps
Probability papers are constructed such that a given probability paper i
associated with a specific probability distribution; that i, different prgly.
ahility papers correspond to different probability distribuiions.

Preferably, a probability paper should be constructed using a trans.
formed probability scale in such a manner as to obtain & linear graph be-
tween the cumulative probabilities of the underlying distribution and the
correspouding values of the variate. For example, in the case of the uni orm
distribution, the cumulative distribution funetion is linearly related to the
values of the variate; thus the probability paper for this distribution would
be constructed using arithmetic seales for the values of the variate and the
assoclated eumulative probabilities (between 0 and L.3Y. For other distrihn-
tions, however, speeial scales are required for the cumulative probabil-
ities in order to achieve the desired linear relationship.

The linearity, or lack of lincarity, of a set of sample data plotted on a
particular probahility paper, therefore, can be used as a basis for determin-
ing whether the distribution of the underlying population is the same as
that of the probability paper. On this basis, then, probability papers may
be used to establish or explore the possible distribution(s) of the underlying
population. In Seetions 6.2.1 and 6.2.2 we illustrate the construction and
application of two commonly used probability papers-—the normal and the
log-normal probability papers, and in Scetion 6.2.8 we deseribe the con-
struction of probability papers for a general distribution.

Experimental data may be plotted on any probahility paper; the plefting
postlion of cach data point is determined as follows.

If there are N observations as, @, -+ -, iy, the mith value among the N ob-
servations {arranged din increasing order) {s plotted of the cumulative prob-
ahility m/(N 4 1),

This plotting position applies to all probability papers; its basis is dis-
cussed in Gumbel (1951). Although there are other plotting positions,
such as (m ~ $) /N, which was advoeatoed by Hazen (1930) and has heen
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Values Of X {in arithmetic scale)

|
|
|
|
|
|

| ¢5(S)
o
0.50 0.84 0.98
i ! ! .;3
-2 -1 [6) 2

Figure 6.1 Construction of normal probability paper

used widely, this plotting position has certain theoretieal weakness; in
particular, when there are N observations, the plotting position (??3- — 5/ N'
would yield a return period of 2N for the largest observation instead of
N (Gumbel, 1954), Still other plotting positions have heen suggoested
{or example, IXhmball, 1946) ; however, none scems to have the theoretical
attributes and the computational simplieity of m/(N 4 1),

6.2.1.  The normal probability paper

The normal {or Gaussian) probability paper 1s constructed on the hasis
of the standard normal distribution funetion as follows. One axis (in
arithmetic scale) represents the values of the variate X, as illustrated
in Iig. 6.1. On the other axis are two parallel seales; one in arithmetic

- scale represents values of the standard normal variate s, whereas the other

shows the cumulative probabilities ®g(s) corresponding to the indicated
values of s as shown in Fig. 6.1. A normal variate X with distribution
N{y, o) would then be represented on this paper by a straight line passing
through $5(¢) = 0.50 and X = u, with a slope (2, — u}/s = &; where
&y i the value of the variate at probability p. In particular, al p = 0.84,
s = 1, hence, the slope is {xs — ).

Such normal probability papers are available commercially. The scale for
the standard variate s, however, is usually omitted in such commercial
papers. '

Any set of data may be plotted on the normal probability paper; however,
If the resulting graph of data points shows a lack of linecarity, this would
suggest that the underlving population is not Gaussian, Conversely, if the
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data points plotted on this paper show a linear or approximately tneg,
trend, the straight line through these data points represents a Si){}gi;il,
normal distribution applicable to the data set (ab least within the range ;L
observations). The mean value and standard deviation of the 1111(:](31‘1'3!%1:,{.
population may also be determined graphically from this straight Ii;‘-w_f_
the value of X on this line corresponding to Pg(s) = 0.50 is the estinﬁt:
of the mean value pyx, whereas the slope of the straight line is the estim:ﬁL
of the standard deviation oy thus ox ~ 2.4 — Ux (/see Iig. 6.1). o

EXAMPLE 6.1

The data for fracture toughness of steel plate, given in Table 36.1, are ploited o
the normal probability paper in Fig. E6.1. !

Table E6.1. Fracture Toughness of Base
Plate of 187 Nickel Maraging Steel (Data
From Kies et al., 1965)

m
m K;, (ksiVin N4
1 69.5 0.0370
2 719 0.0741
3 72.6 0.1111
4 73.1 0.1418
5 73.3 0.1852
6 73.5 0.2222
7 74.1 0.2592
8 742 0.2963
9 75.3 0.3333
10 75.5 0.3704
1 75.7 0.4074
12 75.8 0.4444
13 76.1 0.4815
14 76.2 0.5185
15 76.2 0.5556
16 76.9 0.5926
17 77.0 0.6296
18 77.9 0.6667
19 78.1 0.7037
20 79.6 0.7407
21 79.7 0.7778
22 79.9 0.8148
23 80.1 0.8518
24 82.2 0.8889
25 83.7 0.9259
26 93.7 0.9630
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Figure E6.1  Fraciure toughness plotted on normal probability paper

I Fig. E6.1, values of the fracture toughness K, are plotted against the plotting
positions mf(N + 1), with N = 26.

The straight line shown in Fig. E6.1 is drawn (by cye) through the data points,
from which we find jrze = 77 ksi V. Also, we observe (hat the value of K, at the
849, probability level is 81.6; thus o, = 81.6 — 77 = 4.6 ksi Vin.

6.2.2. The log-normal probability paper

“ The logarithmic normal probability paper ean be obtained from the normal
probability paper by simply changing the arithmetic scale for values of the
variate X {on the normal probability paper) to a logarithmic scale. The
resulting paper would be as shown in Fig. 186.2. In this case, the standard
normal variate becomes

g = (X ,
¢
where @, is the median of X,

If a random phenomenen can be modeled approximately with a log-
normal} distribution, then experimental data obtained therefrom shouid be
spproximately linear when the mith value among N observations and their
plotting positions m/ (N =+ 1) are plotted on the log-normal probability
paper. If the plotted data points yvield a straight line, this line represents
the particular log-normal distribution for the underlying population.
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Figure 16,2 Fracture toughness of welds plotted on log-normal probability |

Table E6.2. Fracture Toughness of MIG
Welds (Data from Kies et al., 1965)

m

m Ky, (ksi +in.) N+ 1
1 544 0.05
2 62.6 0.10
3 63.2 0.15
4 67.0 0.20
5 70.2 0.25
G 70.5 0.30
7 70.6 0.35
8 714 0.40
9 71.8 0.45
10 74.1 0.50
11 T4.1 0.55
12 74.3 0.60
13 78.8 0.65
14 81.8 0.70
15 83.0 0.75
16 84.4 0.80
17 85.3 0.85
18 86.9 0.90
19 87.3 0.9%

——
—

i
899 Siag

YApop
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Wf(n'dingly, the median 2, is simply the value of the variate on this line

_ Fm.].e,gpnnding {0 ®gls) = 0.50; whereas the parameter { is given by the

of the lne, that is,
1 @ T 5
{=-In (—73) = In ('81)
8 L T

Pata for the fracture toughness of MIG welds are tabulated in Table E6.2.

The plotting positions m{(N + 1) are shown in cofumn 3 of Table £6.2; thesc are

glopt

EXAMPLE 6.2

“olotted against the fracture toughness Ky, on tog-normal probability paper in

s, EO.2,
' On the basis of the linear graph of the plotted data shown in Fig, [36.2, we may say

“ ghat the fracture toughness of such welds has a log-normal distribution. Specifically,

ihe straight line drawn (by eye) through the dala points represents a log-normal
- distribution with a median of 74 ksi ¥in. and a COV of 129,

Table £6.3. Precipitation and Runoff Data for Example 6.3

m
) Precipitation X (in.) Runofl ¥ (in.) N +1
1 .01 0.17 0.038
2 1.1 0.19 0.077
3 113 0.23 115
4 1.15 0.33 0.154
5 1.16 0.39 0,192
6 1.i7 0.39 0.231
7 1.17 0.40 0.269
8 [.20 0.45 0.308
9 1.52 0.52 0.346
10 1.54 0.56 0.385
1 1.54 (.59 0,423
12 1.57 0.64 0.462
13 1.64 0.66 0.500
14 1.73 0.70 .538
15 1.79 0.76 0.577
16 2.09 0.77 0.615
17 2.09 0.78 0.654
i8 2.57 095 0.692
19 2.75 0.97 0.731
20 2.93 1.02 0.769
21 319 i1z 0.808
22 3.54 1.24 0.846
23 3.57 1.59 0.885
2 5.11 1.74 .923
0.962

25 5.62 292
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Figure FE6.3¢ Precipitation plotted on log-normal probability paper

EXAMPLE 6.3

Plot on log-normal probability papers the precipitation and runoff data of the
Monocacy River described in Example 5.8.

Rearranging the data given in Example 5.8 in increasing order, we obtain
Table E6.3.

L=in{l d45/0G6G): 079

% gq= 145

inch

o8 - Xe * 08B

o8l

Runoff,

Q4

02

|
|

; : ; - —
5 0 2 40 G0 80 90 95 98 99 999 9999

o
5
o
La¥]

Cumulative Probabiiily = —rﬁ“i

Figure E6.3b Runoff plotted on log-normal probability paper
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The precipitmion values are plotled against the respective plotling positions
SN -+ 1y on log-normal probability paper in Fig. E6.3a. Similarly, the runofl data

- are plotted on log-normal probabiiity paper in Fig. £6.35. From these two figures,

the following may be inferred.
(a) The absence of linearity in the graph of Fig. I6.3a means that the distribution

. of Pl-ccipilauon in the Menocacy River basin is not log-normal,

(b) On the basis of Fig. £6.3b, the runoff of the Monocacy River may be described
with @ tog-normal distribution, with median x;, = 0.66 in. and parameter { =
n(1.45/0.66) = 0.79.

5.2.3. Construction of general probability paper

As indicated carlier, probability papers are constructed in such a way
that the values of the variate and the associated cumulative probabilities
yield & straight line on a two-dimensional graph; conversely, therefore, a
straight Iine on a specific probability paper represents a particular dis-
tribution (consistent with that of the prebability paper) with given values
of the parameters, IFor this purpose, a probability paper should be con-
siructed so that it s independent of the values of the parameters of the
distribution. This is accomnplished by defining a standard variate (if one
exists) appropriate for the given distribution.

In the last two sections, we illustrated the construction and application
of the normal and log-normal prohahility papers; similar papers may be
constructed for other distributions. We illustrate this with the following
examples.

EXAMPLE 6.4

The density function of the (shifted) exponential distribution, Eq. 3.43, is
[x(x) = geMemal, x5 g
={); x <4
where 4 is the parameter, and « is the minimum value of X. In this case, the standard
variale is § = A(X — @), The density function of $ then, according to Eq. 4.6, is
Fuls) =[x (; - a) ,}
=, 5 <0

= @78 s >0

with corresponding CDF
Fo(s) =1 — ¢7%; s >0

On this basis, therefore, we construct the exponential probability paper as follows.
On one axis, scale values (in convenient arithmetic scale) of the standard variate s;
on the same {(or a parallel} axis, mark the corresponding cumulative probabilities
Fi(s) = 1 — 7% The other (perpendicular) axis will represent values of the variate
X {in arithmetic scale). For iliustration, specific values of s and Fg(s) have been
calculated as summarized in Table E6.4a.
Drawing grid lines for given Fg(s) at the indicated values of s shown in Table
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Table E6.4.a Specific Values of s and Fg ()

s 5 (s) 5 Fols)
0.11 0.10 2.53 (.92
0.22 0.20 2.66 (.93
0.36 0.30 2.81 0.94
0.51 0.40 3.00 0.95
0.69 0.50 310 0.955
0.80 0.55 322 0.96
0.92 0.60 3.35 0.965
1.05 0.65 3.51 0.97
1.20 0.70 3.69 0.975
1.39 0.75 3.91 0.98
1.61 0.80 4,20 0.985
1.0 0.85 4.61 0.99
2.30 0.90

£6.4a, we obtain the resulting paper, as shown in Fig,
positive slope) on this paper represents a pariicul
which its intercept on the x-axis is {he value of a, and its slope is [/,

Sample values from an exponential population should plot, using plotting position
m{(N + 1), approximately on a straight line on this probability paper. To illustrae
this, consider the hypothetical set of data in Table E6.45 for a random variable X
The mth observed value and corresponding plotting position m/(N + 1) are shows
plotied in Fig. £6.4h. From the straight tine drawn (by eye) through the data points
in Fig, E6.4b, we obtain estimates of the parameters @ == 150 and 14 == 2000/2.69 =
743.

In the present case, however, the
plished also with a semilog
distribution,

E6.4a. A straight line (wig,
ar cxponential distribution, iy

purposes of a probability paper can be accom-
arithmic paper. Observe that for the exponentiaf

e Fy(x) = ohx
thus,
In [l — Fy(x)] = —2Ax
Therefore, by scaling 1 — £y (x) on one axis (in togarithmic scale) and x on the
other axis (in arithmetic scate), the graph between 1 —~ Fy(x)and xisa straight Hine
on this paper with a slope of A On this paper, however, sample data should be
plotted at the plotting positions {1 — m{(N + 1)].

EXAMPLE 6.5 ( The Gumbel probability paper)

One of the extreme-value distributions (see Vol. 1I) is the Type 1 asymptotic
distribution of extremes, known also as the Gumbel! distribution. 1ts CDF for the
largest value is given by the double exponential function.

Fy(x) = exp [—eafa-)] —a <X < o

in which u is the characteristic fargest value, and 1/o is & measure of dispersion.

Table E6.4.H

Sample Values of X

Plotting position

i
X i N+1
200 1 0.024
201 2 0.049
203 3 0.073
212 5 0.122
248 7 0.171
389 16 0.390
1331 35 0.854
1034 33 0.805
208 4 0.098
226 6 0.146
289 10 0.244
543 20 .488
360 15 0.366
£635 37 0.902
559 21 0.512
909 28 0.683
408 {7 0.415
2497 39 0.951
774 24 0.585
946 29 0.707
2781 40 0.976
308 12 0.293
274 9 0.220
531 19 0.463
460 18 0.439
791 26 0.634
952 30 0.732
1844 38 0.927
952 31 0.756
1427 36 0.878
306 1 0.268
787 25 0.610
254 8 0.195
772 23 0.561
842 27 0.659
981 32 0.780
1122 34 0.829
611 22 0.537
332 13 0.317
343 14 0.341

271



Table 16.5.

Specific Values of s and Fg(s)
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Fgls) § Fiy(s) 5 Fg(w)
.01 0.37 0.50 2.48 0.92
0.05 .51 0.55 2.62 (.93
.10 0.67 .60 2.78 0.94
.15 (.84 (.65 2.97 0.95
.20 1.03 0.70 3.08 0.955
0.25 1.25 .75 3.20 0.96
0.30 1.50 0.80 3.33 .965
0.35 1.82 0.85 349 0.97
0.40 2.25 .90 3.68 0.975
0.45 2.36 (091 3.90G (.98

Values OF x {in ¢rithmetic scale )

In this case, the standard variate can be defined as

S = alX — n)

Fgls) = exp {—e™*)

2o Using the specific values of s and corresponding probabilities J¢(s) caleulated as
S spmmarized in Table E6.5, we construet the Gumbel probability paper as follows,
4.0 Seale the values of s on one axis and the associated probabilitics Fig(s) on the same
A for a parallel) axis as shown in Fig. £6.5. The other axis in Fig. E6.5 represents

Values Of x

%
ope a=

w

values Gf x { in arithmetic scate )

i

o~

=

bl me———

a3

95 96 97

B8 Fyls)

Figure E6.4b  Sample values of X plotted on exponential probability papoer

o

Construction of Gumbel probability paper

4
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values of X, in arithmetic scale. The result is the Type 1 extremal probability 1,
also known as the Gumbe! probability paper. Pitpar,

Again, a straight line on this paper represents a particutar Type b ey,
distribution—the value of X on this line as Fyls) = 71 = 0L368 (or § = 0y
characieristic largest value v, whereas the slope of the straight fine is , as il
in Fig. 36.5.

Cmy)
3 thy
“S“":Ile@

0.3. TESTING VALIDITY OF ASSUMED DISTRIBUTION

When a theoretical distribution has been assumed, perhaps dete
on. the basis of the general shape of the histogram or on the basis of the

data plotted on a given probability paper, the validity of the ABSUMeq -

distribution may be verified or disproved statistically hy {](JGd’."IGSS—of.ﬁ!

tests. Two such tosts for distribution are available—the chi-square and tle
Kolmogarov-Smarnov methods; one or the other of these is generally useq to

test the validity of an assumed distribution mode).

6.3.1, Chi-square test for distribution

Consider & sample of n observed values of a random variable. The thi-
square goodness-of-fit. test compares the ohserved frequencies wy, ng, - - s

of & values (or in & intervals) of the variate with the corresponding {re.

quencics ey, ey, + -+, ¢ from an assumed theoretical distribution, The basig
for appraising the goodness of this comparison is the distribution of the
quantity

ﬁ: (i = e)*
=1 3

€;

which approaches the chi-square (x}) distribution with (f = k — 1
degrees of freedom as n — o (Hoel, 1962). However, if the parameters of
the theoretical model are unknown and must be estimated from the data,
the above statement remains valid if the degree of freedom is reduced by
one for every unknown parameter that must he estimated.
On this basis, if an asswmed distribution yields
k

. )2
sl (6.1)
eon] €

where ¢1..q.; is the value of the appropriate x§ distribution at the cumu-
lative probability (1 - «), the assumed theoretical distzibution is an
acceptable model, at the significance level «. Otherwise, the assumed dis-
bution is not substantiated by the data at the « significance Tevel.

In applying the x* test for goodness of fit, it is generally neeessary (for
satisfactory resulls) to have & > 5 and ¢; > 5.

Mhingy

6.3. TESTING VALIDITY OF ASSUMED DISTRIBUTION s

- Predicted {Bosed On Poisson
/ Disfribution With v = 1L197)
'\v
"} Observed
w 20
5
O
>
6 ———
a
E
2
= IO,
o] T ¥ 7 T T B
8] I 2. 3 4 5

Number Of Sforms in A Year

Figure E6.6  Histogram and Poisson model for storm occurrences

EXAMPLE 6.6

Suppose that severe rainstorms have been recorded at a given station over a period

of 60 years. During this period, there were 20 years without severe rainstorms; and
523, 15,6, and 2 years, vespectively, with 1, 2, 3, and 4 rainstorms annually. The histo-
477 gram for the annual number of rainstorms recorded at the station is shown in Fig,

©1. E6.6, Because the occurrence of severe rainstorms is random, and judging from the
- shape of the histogram, a Poisson distribution seems an appropriate model for the
++ annual number of rainstorms at the given location (station). In particular, on the
. basis of the data, we estimate the average occurrence rate of rainstorms annually as

e L3 IS X246 x3 42 x4
&6

79 .
== 1.20 rainstorms/year
We now apply the chi-square test to determine whether the Poisson distribution is
asuitable model, at the 5% significance level. In this case, since four stoyms in a year
was observed only twice, this data is combined with the data for three storms a year;
thus, k= 4. Since the parameter » is estimated by 7, the quantity A G e e
has a »* distribution with f =k — 2 = 2 degrees of freedom. Based on the com-

putations summarized in Table E6.6, X (1, — ¢,)%/e; = 0.068, which is less than

€50 == 5.99, Hence the Poisson distribution is a valid model for the annual number
of rainstorms, at the 5%, significance level,




276 EMPIRICAL DETERMINATION OF DISTRIBUTION MODELS

Table E6.6. * Test for Storm Occurrence

No. of storms Observed Theoretical o
at station frequency frequency (n; —~ o2
per year Hy ¢ (n; — ;) e
0 20 19.94 0.0036 0.0002
i 23 23.87 0.7569 0.0317
2 i5 14.29 0,5041 0.0353
>3 ,,§ 7.90 0.0100 0.0013
66 66.00 0.0685
e P
EXAMPLE 6.7

) C_Sbnsi(ECI the frequcncy diagram for the crushing strength of concrete cubes showy,
in Fig, £6.7. Visually, on the basis of the frequency diagram and the theoreticy
ensity

distripuliom shown in Fig. E6.7, both the normal and the log-normal d
functions appear (o be suitable models for the concrete strength.

In this case, the z*test will be used to defermine the relative goodness of {it .

between the two candidate distributions.

For the purpose of this example, 8 intervais of the strenpily are considered ag :

shown in Table E6.7.

\
] n =143
08— -
f Lognormal} w= 080 ksi
~Normal o =083 ksi
0‘6 s
[eX 1S
o B
™ I
o q\r_l .
(3 7 8 9

Crushing Strength , ksi

Figure E6.7 Treguency diagram of erushing strengths of conercte cubes {(data
from Cusens and Wettern, 1959)
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Table E6.7. Chi-Square Test for Relative Goodness-of-fit

e

- Theoretical frequency (n; — e)?
Observed e; e
[ntervat  frequency
(ksi) n; Normal  Lognormal Normal Log normal
<675 9 11.1 9.9 0.40 0.09
6.75-7.00 17 3.2 14.0 1.09 0.92
7,00-7.25 22 211 22.1 0.04 0.00
7.25-7.50 31 26.1 26.9 0.92 0.62
7.50-7.75 28 26.1 25.6 0.14 0.23
7.75-8.00 20 21.0 19.8 0.05 0.00
§.00-8.50 9 20.2 19.4 6.22 3.57
>8.50 7 4.2 5.3 1.87 0.54
143.0 143.0 10.73 7.97

The observed and theoretical frequencies within the indicated intervals are sum-
. marized in Table EG.7.

In both cases (that is, the normat and the log-normal distributions), the respective
arameters were estimated by the sample mean and sample variance; hence the net

 number of degrees of freedom for either distribution is f =18 —13 =35 Atthe
G significance level « = 5%, we obtain from Table A3, ¢ g5 = 11.1. Comparing

27 ihis with the values of X (n; — ¢)%e; calculated in Table E6.7, we observe that

" although both distributions appear to be valid models for the concrete strength (on
" the basis of the frequency diagram of Fig. £6.7), the log-normal model is superior t0
" the normal model according to this test, because 7.97 < 10.73,

1t should be emphasized that because there is arbitrariness in the choice

" of the significance level o, the x? goodness-of-fit test (as well as the Kol-
' mogorov-Smirnov method deseribed subsequently) may not provide

ahsolute information on the validity of a specific digtribusion. IFor example,

_ _' it is conceivable that a distribution that is acceptable at one significance
- level may be unaceeptable at another significance level. In spite of this,

however, such tests remain useful, especially for determining the relative

. goodness of fit of two or more theoretical distributions, as illustrated in

Exarmple 8.7,

6.3.2. Kolmogorov-Smirnov test for distribution

© Another widely used goodness-of-fit test is the Kolmogorov-Smirnov

(K-8) test. The basic procedure involves the comparison between the ex-
perimental cumulative frequency and an assumed theoretical distribution
function. If the diserepancy is large with respect to what is normally ex-
pected from a given sample size, the theoretical model is rejected.

Tor a sample of size n, rearrange the set of observed data in increasing
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Salr), F(x)

0

H 1 T T T x
Xt Xz X3 Xg Xp~l %g

Figure 6.2 Empirical cumulative frequency vs, theoretical distribution function

order. From these ordered sample data we develop a stepwise cumulative
frequency function as follows:

0 T < I
k
S,,(:l}) = ;_L n<r < Tip1 (62)
1 T >,
where zy, ap, ++-, x, are the values of the ordered sample data, and n is

the sample size. Figure 6.2 shows a plot of S,(z) and also the proposed
theoretical distribution funetion F(z). In the Kolmogorov-Smirnov test,
the maximum difference between S, (z) and F(z) over the entire range of
X is the measure of discrepancy between the theoretical model and the
observed data. Let this maximum difference be denoted by

D, = max | F(z) — S.(x) | (6.3)

Theoretically, D, is a random variable whose distribution depends on #.
For a specified significance level @, the K-8 test compares the observed
maximum difference of Eq. 6.3 with the eritical value D¢, which is de-

: !.t‘med by
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PD., <D =1—a

rtical values D2 at various significance levels « are tabulated in Table

14 for various values of n. If the observed D, is less than th(? criti(fal
?'w;]“e D%, the proposed distribution is accepFa.blg at the spemﬁe:d sig~
fcance level a; otherwise, the assumed distrlbufslon would be reJectefL_i.
'ﬂl’[‘he advantage of the Kolmogorov-Smirnov (K-8) test over the chi-
'?.square (x%) test is that it is not necessary to divide the data intlo m‘?ervals;
“pence the problems associated with the chi-square approximation for
.gmg,ll e; and/or small number of intervals & would not appear with the

K-S test.

EXAMPLE 6.8

* The data for fracture toughness of steel plate in Example 6.1 have been plotted on
pormal probability paper as shown in Fig. 6.1, The data appear to fall approxi-
“mately on a straight line corresponding to a normal model N (77, 4.6). Perform a
' Kolmogorov-Smirnov test to evaluate the appropriateness of this model relative to
" the given data, at the 59 significance Jevel,

The sample cumulative frequencies are plotted according to Eq. 6.2 in Fig. E6.8.

o8} Sn
N (77,46)

o6 Dina.= 016

o4b-

Q2

] 1 1 ] L 1 i i | i 1.
0 1

70 80 90
Koo ksi v/

Figure E6.8 Cumulative distribution of fracture toughness data
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The theoretical distribution function for the proposed normal model N (77 4

also shown in the same figure. The maxinum discrepancy between the twa fy, 2
is I3, == 0.16 and occurs at Kie = 77 ksi VN In this case, there are 26 observed 4.
points; hence the critical value of Dg at the 5% significance level is f.08 :f daty
{obtained from Table A.4). Since the maximum discrepancy of 0,16 is ]es‘
Dyt = 0.265, the normal maodel N (77, 4.6) is verified at the 5% sigﬂiﬁcané

nctig

f=a
O 0 e

S thay,
¢ lay

EXAMPLE 6.9

Data for stream temperature at mile 41.83 of the Little Deschutes River in Or
measured at 3-hr intervals over a J-day period (Ailgust 1-3, 1969}, are shows
in Fig. E6.9 in accordance with Eq. 6.2. The distribution function of the ]
theoretical model is also shown in the same fipure.

Inn this case the maximum difference between S,{x) and F(x) is observed 10 e
D, = 0.174 at the temperature of 70.9°F. i

With # == 23, the critical value DZ at the 5% significance level, obtained fron
Table A4, is D% = 0.273. Since D, < D7, the proposed theoretical distribyg
is suitable for modeling the stream temperature of (his river at the significance ;eon
of oo = 5%, v

oy
1t l)lUl{e_d
PTOPOseg

Lo T T T ¥ T T ===
Littie Deschutes R. Oregon 0 o
ool Rlver Mile 41,83 { 6 o
FT 1 Aug-3 Aug, 1969 .
s v | Dmuxzo 174 O
0.8}— o ¢ i
o—
g o7 o .
i -
Bc
Te 0.6 e -
s Q Ir
27 0.5— .
g o0~
5 o
O 04— 20 .
D
03— - s
O
0,2 b @a- K/S Statistic 0474 N
o Critical val, 0,273
D.
Ol o O Predicted -
e 0 Observed
ol | | E I | i | P

|
63.4 64 65 66 57 68 89 70 7L 72 2.5
Ordared Random Samples, °F
Figure E6.9  Kolmogorov-Smirnov test for proposed steeam lemperature predic
tion model (after Morse, 1072)
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1, CON CLUDING REMARKS

ylereas Chapter & was concerned with the statistical (rsti:'natior} of
: ameters of a distribution, this chapter is concerned with the deferming.-
.ﬂl: of the probabifity distribution for a random variable, and with ques-
lz;n related to the Val‘idity‘ of an assumed dist.rilmt.'mn, based on ﬁl'lit(i
nples of the populatu}m. Unliessls d(-z_velnped theoretically from-physwal
&msidc_*n‘ﬂ ions, the required dl‘stl“lblﬂ;l()n model may be detrel:nﬁ'nned ermi-
']j‘]'i(ffi”.\,"’- One way of doing this is th}'ouglll the.use of probah].hty papers
mnsn-uci.vd for specifie distributions. The linearity, or lack of .111](‘,51.2‘11,-}’, of
;31:11)10 data plotted on such papers would suggest. the appropriateness of a
)iven distribution for modeling the population. .

The validity of an assumed distribution may also be appraised by good-
ess-of-fit tests, including specifically the chi-square {x?) and the Kol
OgOTO-SUTTI 0L {IX-8) tests. Such tests, however, depend on tl'{e pre-
eribed level of significance, the choice of which is largely a sub!ectlve
411:1Ltv.1‘. Nevertheless, these tests are useful for determining (in the hgh.t of
ample data) the relative appropriatencss of several potentially possible
listribution models.

=

| PROBLEMS

Plot the data in Example 6.1 on log-normal probability paper. Estimate the
median and COV from the straight line drawn through the data points,

6.2 The ultimate strains (¢, in %) of 15 No. 5 steel reinforcing bars were meas-

ured. The results are as follows (data from Alien, 1972):

19.4 17.9 161
16.0 17.8 16.8
16.6 [8.8 17.0
17.3 201 18.1
184 19.1 18.6

Plot these data on both the normal and the log-normal probability papers,
and discuss the resulis.

1 -6.3  The shear strengths (in kips per square feet, ksl} of 13 undisturbed sampies of

clay from the Chicago subway project are tabulated as follows (data from
Peck, 1940):

0.35 0.42 0.4% 0.70 0.96
0.40 0.43 0.58 0.75
0.41 0.48 0.68 0.87

Plot the data on log-normal probability paper. Estimate the parameters of the
log-normal distribution to describe the shear strength of Chicago clay.

For the wind velocity data in Problem 3.26 (of Chaple_r 3), plot the dat‘a on
normat probability paper. Determine the normai distribution for describing
the wind velocity.

12265 A random variable with a triangular distribution between a and a - r, as
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shown in Fig. P6.5, is given by the density function
2(x ~
Frla) = _;rm) ;
w= () elsewhere.,
(a) Determine the appropriate standard variate S for this distributien
(b) Construct the corresponding probability paper. What do the '
at £5(0) and Fg(1.0} on this paper mean?
(c} Suppose the following sample values were observed for X.

a<x<a-dr

values of ¥

36 3z 34 71
18 69 45 66
56 7 53 58
64 50 55 53
72 28 62 43

5

Plot the above set of data on the triangular probability paper. From this Plog

estimate the minimum and maximum values of X,
6.6 The density function of the Rayleigh distribution is given by

. X 5
Sx(x) e eg et x> 0

= () x <0
in which the parameter « is the modal {(or most probable) value of X,

(a) Construct the probability paper for this distribution. What does the -

slope of a straight line on this paper represent ?
(b) The following is a set of data for strain range induced by vehicle loads on
highway bridge members.

6.3. TESTING VALIDITY OF ASSUMED DISTRIBUTION

1 (x)
)
2/7
g X
o o+t

Figure PG.5

0.13 121.58 2959.47 102.34
0.78 672.87 124.09 393.37
3.55 62.09 85.28 184.09
14.29 656.04 380.00 1646.01
54.85 735.89 298.58 412.03
216.40 §95.80 678.13 813.00
1296.93 1057.57 861.93 239.16
952.65 470.97 1885.22 2633.98
8.82 151.44 862,93 638.38
29.75 163,55 1407.52 855.95
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67 Time-to-failure (or malfunction} of a cerlain type of diesel engine has been
recorded as follows (in hours).

Strain Range, in micro infin, (Data courfesy of W. H. Walker)

484 52,7 42.4
47.1 44.5 146.2
49.5 84.8 115.2
1160 52.6 43.0
84.1 53.6 103.6
99.3 33.5 64.7
108.1 43.8 69.8
47.3 56.3 44.0
93.7 34.5 36.2
36.3 62.8 50.6
122,53 180.5 167.0

Plot this set of data on the Rayleigh probability paper constructed in

part (a).

(c) What inference can you draw regarding the Rayleigh distribution as
model for live-load stress range in highway bridges, in light of the data
plotted above? Determine the most probable strain range (if possibl)

from the results of part (b).

(a) Construct the exponential probability paper (seec Example 6.4) and plot
on it the data given above.

(b) On the basis of the results of part (a), estimate the minimum and mean
time-to-failure of such engines.

(c) Perform a chi-square test to determine the validity of the exponential
distribution at the 1%/ significance level,

68 The following are observations of the number of vehicles per minute arriving

al an intersection from a one-way street:
0,3,1,2,0,1,1,1,2,0,1,4,3,1,1,0,0,1,0,2

Perform a chi-square test to determine if the arrivals can be modeled by a
Poisson process, at the 1% significance level.

Cars coming toward an intersection are required to stop at the stop sign
before they find a gap large enough to cross or to make a turn. This acceptance
gap G, measured in seconds, varies from driver to driver, since some drivers
may be more alert or more risk-taking than others. The following are
measurements taken for several similar intersections.
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eptance gap sizc . e o Pata on the rate of oxygenation K in streams at 20°C have been observed at
Acceptance gap size (sec.)  Observed number of drivers il the Cincinnati Pool, Ohio River, and summarized in the following table (data
0.5-1.5 0 o from Kothandaraman, 1968).
[.5-2.5 G
2.5-3.5 34 — _ -
3.5-4.5 132 K (per day) Observed frequency
ggugg 179 0.000 to 0.049 1
6.5_7.5 218 0.050 to 0.099 1
75-8.5 o 0.100 to 0.149 20
8.5.9.5 5 0.150 to 0,199 23
9.5-10.5 " 0.200 10 0.249 5
10.5-11.5 3 0.250 1o 0.299 i
11.5-12.5 0 0.300 to 0.349 2

A normal distribution with a mean oxygenation rate of 0.173 per day and a
standard deviation of 0.066 per day (both values are estimated from observed
data) is proposed to mode! the oxygenation rate at the Cincinnati Pool, Ohio
River.

Perform a chi-square test on the goodness of fit of the proposed distri-
bution at the 59 significance level.

{a) Plot a histogram for the aceeptance gap size.

(b) Assume that the distribution of G is normal; estimate its mean angd -
variance. You may assume that all observations jn each interval havethe -
gap length equal to the average gap Jength for that interval. For example
for the interval 1.5-2.5, it may be assumed that there are 6 obscrvmi(m; On the basis of the data given in Problem 6.2 and using the Kolmogorov-
with gap length of 2.0 sec, Smirnov method, determine which of the two distributions (normal and jog-

{c) Perform a chi-square goodness-of-fit test at the 19 significance level, normal) considered in Problem 6.2 is a better modet for the distribution of the

6.10  An extensive series of ultimate load tests on reinforced concrete columns wag 15 ultimate strains of stee! reinforcing bars.
carried out at the University of 1llinois (Hognestad, 1951). The ratio ¢ of the
actual ultimate foad to that computed by the appropriate ACI 318-63 formula,
without consideration of the understrength factor in the ACI code, is
tabulated below (for part of the 84 square tied columns tested).

Table of ratio ¢

0.79976 0.99410
0.82395 0.93811
0.99938 0.81649
0.78017 0.87551
0.91342 0.95705
0.90304 0.92803
0.86011 0.93054
1.0£836 1.03065
090133

(a) Plot the data on normal probability paper, and estimate (if possible} the
mean and standard deviation from this plot.

(b) Perform a chi-square test at the 5%, significance level on the fitted
normal distribution,

(c) Repeat part (b) using the Kolmogorov-Smirnov test.




7. Regression and
Correlation Analyses

When dealing with two or more variables, the functional relation he

the variables is often of interest. However, if one or both variables {in

two-variable case) are random, there will he no unigue 1‘(?Iz.i,{:i(>1mhip bl

tween the values of the two variables-—given a value of one variable ({4

=

controlled variable), there is a range of possible values of the other—ang -
thus a probabilistie deseription is required. If the probabilistic 1'(elaiiunshih-.

between the variables is deseribed in terms of the mean and variance of
one random variable as a function of the value of the other varishle, we
have what s known as regression analysis. When the analysis is Iimited tq

lincar mean-value functions, it is ealled lnear regression. In general, how.

ever, regression may be nonlinear. Tn some cases, nonlinear regression

problems may be converted to linear ones by appropriate transformation

of the original variables,
In the following, we present the concepts of regression. analysis {in-

cluding nonlinear regression and multiple linear regression), and their 70

applicalions to engincering problems.

7.1. BASIC FORMULATION O LINEAR REGRESSION

7.L1. Regression with constant variance

When pairwise data for two variables, say X and Y, are plotted on a two-
dimensional grapl, such as shown in Fig, 7.1, the possible values of one
variable, for example, ¥, may depend on the value of the other variahlo
N For this reason, it would he inappropriate to analyze the data, say
for ¥ (for example, in determining the mean and varianee of V), without
due consideration of X. In the case of Fig. 7.1, we observe that {here
15 a general tendeney for the values of ¥ to inerease with inereasing values
of X' (X may be deterministic or random), Henee the mean value of ¥
will also increase with inercasing values of X the actual values of Y, of
course, may not always inercase with inereasing values of X. In general,
the mean value of ¥ will depend on the value of X, Suppose that this

286
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y y o=t Bx

Linear regression analysis ol data [or two variables

relationship is linear; that ig,
EY|X=2)=a+fz {7.1)

where o and 8 are constants, and the variance of 1V may be independent
or a funetion of 2. This is known as the linear vegression of ¥ on X, Con-
gider first the case with Var(Y fa) = constant.

Coneeivahbly, there could be many straight lines, depending on the values
of @ and B, that might qualify as the mean-value function of ¥ in the light
of the data. The “best” line may be the one that passes through the data

spoints with the least error. To obtain this, we see from IMig. 7.1 that the

. : 3 !
difference between cach observed value y; and the straight line y/ =

S+ Bay 18 {ye — v | Therefore the ling with the least total error can be

ohtained by minimizing the sum of the squared errors—that is, by min-

Cimizing

n

A= D0 (g gt = 2 (g — a = )

4==1 i=}

to ablain o and g, where n is the number of data points. This is known as

“the method 9 least squares, which leads to the following:

L oy — =) (=1) = 0
dox Fumd
dA? -
T 2{:1],- gy ﬁiﬂ;‘) ("‘"la) = )
>
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From which the least-squares estimades of « and £ are as follows:
1 3 .
& = - By - EE-’L‘{ =g - pT (7.2)
7 n :
and
b = Zrgi — n®y 2~ By - @)
E(ﬂ}f v ’lm)g (73)

Zaf - ng
where £ = Y % |
Therefore the least-squares regression line is

EY|z) =&+ 8 (7.4)

It should be emphasized that, strietly speaking, this regression line is valid
only over the range of values of 2 for which data had been ohserved.

Fquations 7.1 and 7.4 are referred to as the regression of ¥ oon X 11 ¥
and ¥ are both random variables, we may also obtain the least-sguareg
regression of X on ¥ using the same procedure; in this latter ease, we would
oblain the regression equation for B(X ly). In general, this is a different
linear equation from that of E(Y | 2); the two regression lines, h()we\re]‘}
always intersect at (&, 7). For example, Meadows et al. (1972) diseussed
the per capita energy consumption Y versus the per capita GNP output,
X of different countries. If we are interested in predieting the energy con.
sumption for a given GNP gutput of a country, a regression analysis of ¥
on X would he appropriate. Alternatively, the GNP output of a country
may be estimated on the basis of the energy consutnpbion; in this case, the
regression of X on Y s required (see Problem 7.5).

Since the general trend is aceounted for through the regression line of
Iq. 7.4, the variance about this line is the measure of dispersion of interest,
which is the conditional variance Var(Y [ z}. For the case where the
conditional variance Var(Y |2) is assumed to be constant within the
range of x of interest, an unbiased estimate of this variance is

1 n
S = == 2 (4 — ¥

n -2

sl

=“_i§[ i(?/f"“g)g““.@?i (ximzﬁ)ﬂ] (7.5)

P

Observe that this is

AE
e =~ 750
Yz 7o D ( }

Thus the corresponding conditional standard deviation is 8y

|z -
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s o . B el o i prad i o he respective truoe
The coeflicients & and 8, and &5, are estimates of the respeetive truc

(7 . Bl oy e da LY Y e roestal-
Jalues of a, g, and Var(Y {a). Confidence intervals may also be estab

Jished on the basis of available data, I'or this purpose, if we assume that

¥ has a normal distribution about the regression line £( };’ ba) for all values
 z, then & and # individually follow the t-distribution (Hald, 1952).
of & v

S In such a case, the regression values

E(Y|a) =a-+ fa

will also be i~distributed. On these b‘ases, the required c:o'nﬁ(:lmw(:z illlt‘(‘,]'\fﬂlS
ean be determined. % is worth noting ]m}'u t'._hm, i;].)(.ES(E intervals for e, 8,
p(Y | 2), and Var (¥ fa) will decrease \\f{Lh 11'191‘@:&5111&{_3‘1.. | _—

The physical effect of the linear regression of ¥ on X ean be measure

o . N PRV 2 moenlfne fr kine
i py the reduction of the original variance of ¥, &2 resulting from taking

into account the general trend with X This reduction is represented hy,

(7.6)

" where

kil
- Y0
gyt e Z (¢ — §)*
K 1 el
is the sample variance of V. Tt will be shown fater {in Seetion 7.5) 1,]'1 1t
(-f or large #) # is approximately equal to a point estimate of the corvelation

coeflicient.,

Regression of normeal veriates. The a-ssumpt'ions of linear %ngd(zl a}]d
constancy of variance underlying linear regression are, in fact, 1731’130,1(;,1;1:
properties of populations that are jointly 1101'maj1. We re(za‘l]‘ from ].ux.af.mp‘ (i
3.95 that if X and ¥ are jointly normally distributed, the conditiona
mean and variance of ¥ given X = x are as follows:

oy
E(Y1a) = ny 4 p— (2 — px)
ox

and, . )
Var(Y |z} = o?(1 — pY)

where p is the eorrelation coeflicient. These results mean that.ﬂ wo va‘r]f

ates are jointly normal the regression of ¥ on X is linear \\’I.th ri_t(?llht,(i.rlt

conditional variance (that is, independent of @) ; specifically, m this case,

the linear equation is of the form of 1iq. 7.1 with

ay

B=p

oy
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and,

a = py — Bux
Therefore, if the underlying populations are jointly normal, lineay
sion should, properly, be used.

The expressions for « and B given above may be compared with th
least-squares estimates & and § of Eqs. 7.2 and 7.3 {and its subsetuni

regrag.

extension in Eq. 7.23). Also, the above conditional variance may be cop. -

pared with the corresponding estimate % . given subsequently in Eq. 7.94

EXAMPLE 1.1

Tabulated in the first three columns of Table E7.1 are shear strengths, in kipg
square foot (ksf), obtained from 10 specimens taken at various depths of c;;:r
stratum. Determine the mean and variance of the shear strength as a linear functiog
of depth. Assume that the variance is constant with depth.

Table E7.1 summarizes the computations in the regression analysis.

On the basis of the calculations in Table E7.1, the least-squares mean shegy
strength (in ksf) as a function of depth x is given by

E(Y ]x) = 0.018 + 0.0517x

whereas the variance of the shear strength at a given depth is estimated to be 0.03¢3
(ksf)?, giving sy, = 0.192 ksf. If the lincar trend with depth is not taken into
account, the unconditional variance of the shear strength would be 0.197 (ksf)2, ang
sér = 0.44 ksf. Hence the conditional standard deviation sy, is considerably smaller
than sy,

The regression equation obtained above may be used to predict the shear strength

Shear Strength, y, ksf

1,0 2.0 N
I 1 -
0.C18 +0,0517x
Y o
®
o
a
-
o
20—
Envelope
30—
y

Figure E7.1 Regression line for shear strength with depth

Computational Tableau for Example 7 1

Table E7.1.

To determine sy,

To determine & and §

(}'g‘ - )’z’r)g

— ¥
—0.045

Vi

v =a+ fx;

X2

X Vi

Strength
(ksf)
Yi

Depth
{fr)
x

Specimen
no.

0.0020
0.0228
0.0571
0.0083

0.325
0.429

0.078

36
64
196

1.68
4.64
7.00
11.63
12.78
20.20
25.80
36.00

36.10
47.40

6.151
—0.239

0.336

0.58
0.50

0.83

0.739

0.250

i4
14
I8
20

0.051
~0.236
—0.039

0.739

0.689

196

0.0557
0.0015

0.946

0.504
1.020
1.662
2.250
1.662
2.495

324
400

0.71
1.01
1.29
1.50
1.29
1.58

1.049
1.049
1.257
1.463
1.566

0.0580
0.0590
0.0299
0.0002

6.241

400
576
784
900

20
24
28
30

0.243
-~0.173

0.014

10

A% = 0.2945

203.23 3876 10.946

9.57
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from 61t to 30 ft deep. It may not appty to depths beyond 30 ft, unless the fingyy

trend can be justified beyond this depth on physical ground (for example, the g
soif type).

Graphically, the regression tine obtained above is shown in Fig. E7.1; also shey,
is the envelope with 45y, from the regression line. This represents 2 band width z;
one {conditional) standard deviation from either side of the regression line, 0

g

Table E7.2. Computational Tableau for Example 7.2

Precipita-
tion Runoff
Xy Yi - " s
(in.) (n) xgpe xF ypmat e y—pp (-
1 1.11 0.52 0.58 1.23 0.343 0.177  0.0313
2 1.17 0.40 0.47 1.37 0.369 0.031 0.0009
3 179 0.97 1.74 3.20 0.637 0.333 0.1119
4 5.62 292 1640 31.60 2.280 0.640  0.4000
5 1.13 0.17 0.19 1.28 0.351 —0.181 0.0328
6 1.54 0.19 0.29 2.37 0.530 —0.340 0.1158
7 3.19 0.76 243 1015 1.245 —0.485 0.2360
8 1.73 0.66 114 2,99 0.612 0.048 0.0023
9 2.09 0.78 1.63 4.37 0.770 0.010 0.0001
10 275 1.24 3.41 7.55 1.059 0.181 0.0328
11 1.20 0.39 0.47 1.44 0.381 0.009  0.0001
12 1.01 0.30 0.30 1.02 0.299 0.001 0.0000
13 1.64 0.70 1.15 2.69 0.574 0.126 0.0158
14 1.57 0.77 1.21 2.46 0.544 0.226  0.0511
15 1.54 0.59 0.91 2,37 0.530 0.060 0.0036
16 2.09 0.95 1.99 436 0.770 0.180  0.0326
17 3.54 1.02 3.62 1255 1.400 -0.380  0.1442
18 1.17 0.3% 0.46 1.37 0.368 0.022  0.0004
19 1.15 0.23 0.26 1.32 0.360 —0.130 0.0169
20 2.57 0.45 1.16 6.60 0.980 ~0.530  0.2810
21 3.57 1.59 5.66 1274 1.415 0175  0.0306
22 5.11 1.74 890 26,18 2.084 —0,344 0.1185
23 1.52 0.56 0.85 231 0.521 0.03%¢  0.0015
24 2.93 1.12 3.28 8.58 1135 ~0.015 0.0002
25 I.16 0.64 0.74 1.34 0.365 0.275 0.0755
L 53.89 20,05 59.24 153.44 A% = 1.7350
. 53.89
X e 2.16
20.05
_— _"“2“"5“‘"" — 0.80
7w 59.24 - 25(2.16)0.80) - 0.435

153.44 ~ 25(2.16%°
& = (.80 — (0.435)(2.16) = —0.14
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y'= 004 + 0.435x

Precipitation, x, in,

Figure E7.2 Runoff vs. precipitation for Monocacy River basin

. EXAMPLE 1.2

The precipitation and runoff data for the 25 storms on the Monocacy River, were
iven earlier in Example 5.8.

(2) Plot the observed data for runoff vs. precipitation.

(b} Determine and draw the regression line of runoff on precipitation (that is, the

i mean runoff for given value of precipitation},

(c) Estimate the variance of runoff for a given precipitation. Assume that the

‘. variance of the runoff is constant with precipitation,

(dy Assume that the runoff corresponding to a given precipitation is a normal

.f;i-' variate; what is the probability that the runoff will exceed 2 in. during & storm with
© 4-in. precipitation?

Solution

{(a) The plot of data is shown in Fig. E7.2, )
(b) For the regression analysis, see Tabie E7.2. From the table, we obtain

E(Y[x) = —0.14 + 0.435x

It should be emphasized that this regression equation is applicable only within the

range of the data; in particular, it should not be used for precipitation less than 1 in,
(¢) For given precipitation, the variance of runoff is

sy, = V0.075 = 0.274 in.
{d) When the precipitation is 4 in., the mean runoff

E(Y|X =4) = — 014 4+ 0435(4)
= 1,6in,

.: Therefore the normal distribution for the runoff ¥ in this storm is N(1.6, 0.274) in,
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Hence

1]
H

o I
POY > 2] X =d) =] — q)(ii, ‘-(’)

0.274
s | (0{1.46)
=1 - 09279
= (.072]

7.1.2. Regression with nonconstant variance

Conceivably, the conditional varianee about the regression. line may he 4
funetion of the independent (controlled) variable; this would be the Case
when the seattergram. of the data shows a significant variation in the dogrea
of scatter with values of the controlled variable. In such cases, the pe
gression analysis presented in Section 7.1.1 can be modified to take aceount
of the variation in the conditional variance. This variation may be ex.
pressed as
Var(Vle) = o2g2(x)

where g(2) is a predetermined funetion, and ¢ is an unknown constant,
Again, for linear regression,

B(Y |2) = «+ fu

In determining the regression equation, it would seem reasonable 1o assume
that data points in regions of small varianee should have more fweight”
than those in regions of large variance. On this premise, we therefore
assign. weights inversely proportional to the variance; or

from which the least-squares estimates of & and 8 become
. Zwgy: — BXwa;
& = TR PR
pTIE
and

2w (Zwya) — (Zway) (Sway)
Zwi(Zwat) — (Swa)?

(7.8}
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where

e = ot =

‘ ; g* (@)
An unbiased estimate of the unknown o? is

_ Zwilys — 6 — Bu)?

3
§
n -2

Hence an estimate of the conditional variance is

She = %% () (7.9)
nd
' Sy = 8g(x) (7.9a)
EXAMPLE 7.3

The maximum settiements and maximum differential settlements of 18 storage
tanks in Libya have been observed; the data are plotted as shown in Fig. E7.3.

Maximum Differentiol Settlemant, cm

Moximum Settlement, cm

Figure E7.3 Settlement of tanks on Libyan sand (data after Lambe and Whit-
man, 1969)

From Fig. E7.3, the scatter of the differential settlement appears to increastj, with
the maximum settlement. Physically, this would be expecteq, since the maximum
differential settlement would ordinarily not exceed the ma?umum‘sett]ement. For
these reasons, the conditional standard deviation_ of the differential settlement Y
may be assumed to increase linearly with the maximum settlement X, or

Var (Y| x) = o%?
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Table E7.3. Computational Tableau for Example 7.3
Maxi- o
mum
Maxi- differ-
mum  ential
settle-  settle-
Tank ment ment
no. {cn) (cm)
i Xy Vi Wy WeXg WYy Wy waxS wi(py - & - A
i 0.3 0.2 1111 3.33 2.22 0.67 i.0 0.0178
2 0.7 0.7 2.04 143 1,43 1.00 1.0 0.0816
3 0.8 0.5 1.56 1.25 0.78 0.62 1.0 0.0066
4 0.8 1.1 1.56 1.25 1.72 1.37 1.0 0.4465
5 0.9 0.3 1.23 1.1 037 033 1.0 0.1339
6 1.0 0.6 1.00 1.00 0.60 0.60 1.0 0.0090
7 1.1 0.6 0.83 091 050 055 1.0 0.0212
8 1.4 1.0 0.51 071 0.51 0.7 1.0 0.0010
9 1.5 1.0 0.44  0.67 0.44 0.66 1.0 0.0002
10 1.6 1.0 0.39 0.63 0.39 0.62 i.0 0.0028
3 1.6 1.3 0.39 0.63 051 0.81 1.0 0.0180
12 2.0 1.5 0.25  0.50 (.38 .75 1.0 0.0060
13 2.4 1.3 017 042 0.22 0.53 1.0 0.0158
14 2.6 2.3 0.15 038 035 050 1.0 0.0479
15 2.9 1.9 0.12 034 023  0.466 1.0 0.0001
16 2.9 2.3 0.12 0.34 0.28 0.80 1.0 0.0164
17 3.7 1.7 0.07 027 012 04 1.0 0.0394
18 1.5 0.6 044  0.07 0.26 0.40 1.0 0.0776
b 22,38 1584 11.31 1242 18.0 0.9418
L (22.38)(12.42) — (11.31)(15.84)
foe (22.38)(18) — (15.84) 0.65
5 — 11,31 — (0.65)(15.84) — 0.045
22.38
. 0.9418
s T 0.0589
l“Iﬂ’Im = 0243}6
Thus
L 1
W, = "):_:E

The required computations are summarized in Table E7.3, from which we obtain
the regression equation for estimating the expected maximum differential settlement
Y (in centimeters) on the basis of information for the maximum setilement X of the
tanks (in cm) as

E(¥|x) = 0.045 + 0.65x
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The corresponding standard deviation js

&y fa == 0.243x

7.2, MULTIPLE LINEAR REGRESSION

The value of an engineering variable may depend on several factors. In
queh eases, the mean and variance of the dependent variable will be a
qunction of the values of several variables. When the mean-value function
i assumed to be linear, the resulting analysis is known as multiple linear
.-f-(;gr@ssifni,.

Tinear regression analysis for more than two variables is simply a
: genem.limti(m of the regression analysis discussed in Section 7.1, Suppose
gt the dependent variable of interest is ¥, and that it is a linear function
Cof m variables Xy, Xo, . . ., X.. The assumptions underlying multiple
pegression analysis are as follows,

—

1. The mean value of ¥ is & linear funetion of @, 24, . . ., 2,; that is,
E(Y | =, .. = fo - Bits b o e B (7.10)

where B, 81, . . ., Bw are constants, to be determined from observed data,
The conditional variance of ¥ given 24, + -+, 2, is constant; that is,

Var (¥, ..
or proportional to a given function of xy, . .

Var{Y | ay, .

-y T

=

T == ol
. ) that ig,
ces ) = %2, ., T

'The regression analysis then determines estimates for g, £, . . ., Bm and

of based on s set of observed data {xiy, @y, .. o, T, W), 0 = 1, .., 0
BEgustion 7.10 can be written also as
I,‘j(}; [ Tiy e 3 a:m) R 4 _lA ﬁl(mi - -/El) + et + ’8111("!:716 - -i:m) (711)

-~ in which the #/s are the sample means of X; and « is simply a readjusted
- eonstant.

. Again we restrict our derivation for the ease in which the conditional
- variance Var(Y [z, ..., &) is constant, The sum of squared errors for a
- set of n data points, then, is

A?

2 (g — y)?
gl

7

Z [yx i S ﬁl(xli - :El) v ﬁm(ﬂ:ﬂn’ - :Em} ]0

gl

(7.12}

© By the least-squares eriterion, we minimize A? 1o obtain the following set
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ol equations for determining the estimates of o and B j o= 1,9
H [t B e s
ax ; |
O‘(X =2 Z [yi - e .Bl(mlf - 'il) . ,ﬁm(ﬂ-’mf '""' -/Em)} = {)
dA®
s 2 2y~ a = ey~ &) — -
. ,ﬁm(:vmi - jm}](ﬂ;lf — jl)} == O
: {(7.13)
JA?
op. = 2 2 ALy —a = hlwy ~ &) — -
- lgm(l’mz‘ - fm)](i‘"mf - -ﬁm) } = 0
where £ = > From the first of these equations, we have
ETIH - NE - 31 E(Q"]{ - :ﬁi) TTosrr Em E(I?ni - -'gm) = (}
but 2wy ~ &) = +-+ = E{x,; — &,) = 0; thus
o Hye
a _ e Iz
" i (7.14)

Substituting this value of & into the remaming equations in g, 7.13
we obtain o

B (@ — &)+ By S(an — F) (Xgy — Fp) A+ oo

- B B = 80 (g ~ ) = Bans — ) (g — )

,BI z(mmi - :Em) (xli - f]) + ,8‘). E(wmi - fan) (-'7521' - :EZ) _|"' L
+ B E(mmi " jm}g = E(xmi - -{Em) (y; - ?})

I.t can he oh.serve(.l that this represents a sot of m linear simultancous equa-

tions involving the m unknowns fi, . . ., .. The solution of I2q. 7.15 yiclds

the rec,}‘uu'cd (‘:()ef_'hel(.znts B - - P, from which we obtain the least-squares
regression equation

EY [, c2) = a4 Bu(a— &) 4+ oo A Bulam — T

= ﬁU »1_ 181 T + st '—I_ ,Bm Ty (716)
whaore
ﬁﬂma"ﬁlﬂl'—"'“ﬁmfnt
- p} £ "6 1 " ¥ 1 g 3
7 Ih(; variance  of ¥ about this mean-value function, namely,
Var(Y | @, ..., 2,0, is 2 measuze of the conditional dispersion ahout the
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gz‘f‘-‘i""i‘m egualion. An unbiased estimate of this conditional variance is

A2

Syme®n e g — 1

2[?11 — @ B\l (:U}i - -%l) - ,,. e Bm (-’vrm' - -im) ]2
n—m — 1

(7.17)

The corresponding  econditional standard deviation, therefore, is

A

(7.17a)

S)’l et = "
Foeetn S —

-Ohviousty, . 7.17 is valid only if the sample size n is larger than m 4 1.

iin, the assumption of normal distribution for ¥ may be inveked for the
ose of establishing confidence intervals on the regression coeflicients
for computing probabilities associated with the random variable Y.

A
purp
and

EXAMPLE 7.4

An important factor in the prediction of frost depth for highway pavement design
s the mean annual temperature for the site under consideration. The mean annuat
emperature records at 10 different weather stations in West Virginia are sum-
marized in Table E7 44.

Since a pavement may be constructed in various jocations over the state, where
temperature records may not be availabie, it is desired to predict the mean annual

- temperature of a locality on the basis of its elevation and latitude, using the in-

formation in Table E7.4ea. The following equation is assumed:

E(Y | Xy, xg) = iy A iy F ffyxy

where
O
Y = mean annual temperature, in F
x; = elevation, in feet, above sea level
xg = north latitude, in degrees

Determine estimates for gy, By, and f; and evaluate the conditional variance

Var (Y] x;, xa), which is assumed to be constant. Table E7.4b summarizes the

~ computations required in the multiple linear regression analysis, From these results,

the mean annual temperature for a locality in West Virginia, with elevation x; and
latitude xy, is given by
E(Y | Xy, xp) = 121.3 - 0.0034x; ~— 1.65x,

whereas the standard deviation $y,, ., 0f the mean annuai temperature at any
locatity is estimated to be V0.547 = 0.74°F. It may be observed from Table E7.45
that by taking the elevation and latitude of a locality into account in estimaling its
mean annual temperature, the variance of ¥ is reduced by 94.3%, of the uncon-
ditional variance,

At Gary, West Virginia, which is located at an elevation of 1426 11 and iatitude of
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Table I7.4e. Mean Annual Temperature in West Virginia—Data Frop,

o
S~ —
: T C T — O — — o Slx
Moulton and Schaub (1969) “18235873%853 |® || S lm
—_— P-Soos—asdoo | 9| et | S
Elevation North latitude Mean annual| B ] E 2 & ! 3;
Weather stations 6] {deg) temperature (°) o =29 =< 79
+ % I "
. §
Bayard 2375 39.27 47.5 ST lnggmnanata o « L
Buckhannon 1459 39.00 52.3 T RRRR ARARRA & :;'
Charleston 604 38.35 56.8 ek o b
Flat Top 3242 37.58 48.4 e ” °
Kearneysville 550 39.38 54.2 fo
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Pickens 2727 38.66 48.8 Il B I
Rainelle 2424 37.97 50.5 N 55 % ]
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37.37°N, the expected mean annual temperature would be LE ﬁ; I o ! i :-
E(Yit & el e o\ [on o en D vy
3 ( i 426, 37.37) = 121.3 — 0.0034 = 1426 — 1.65 = 37.37 o 5 pacl ol ol o0
= 54.80°F g 5 P RFARAERT ¢
' B = ST REe8ERA | 2 g 0 I | 1 X
I . . " G ) f — - o —
and a conditional standard deviation of 0.74°F. if the mean annual temperature is e T A A g o % s
assumed to be Gaussian, the 10-percentile value of the mean annual temperature y = Wl ! ! s -~ e § o il &
is determined as follows: o % w S mZ. €z 2slR e
V. — 54.8 2 - I aRe@¥aIT g
P(Y <y} = (])(-,W;EM.__'_ = 0.1 E o o R m r.
0,74 P nd Nggg\ogmg%g o] e +L":MI - - 2 o
or £ L [ES8STRES88 a8 o § (8 81 HF
Vg = 54.8 + 0.7401(0.1) S g|Poemeeooe~ v E o I o
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= 53.9° = N g| o o «f
sl ¥y lgegregongy |4
7.3. NONLINEAR REGRESSION 5 (R = Oy On B0 o M- e | N
ol >
: % X
, . . . . . . e "
Relationships between engineering variables are not always lincar, or may = 2 o
nob always be adequately deseribed by linear models. Experimental data H 5 & = S =
- auch variables mav s ; inenr ir ween the observe = W o0 oG o e 00 ~ = g o ™
for such Vauabl(_!b may ‘.show a 11011}111@1 trend between 1111(,, ohserved SEfsiddsudrtdod | g ; } W\
values of the variables. Ifor example, IMig. 7.2 shows a plot of the average =& 2 AR GRS A - » e
all-day parking cost in a central business district versus the urban popu- = Al ‘O g =R lE o 3 ‘o\ g
. . ce B, - = - \
lation for various cities in the United States, Simitarly, data for the average . oo | | - @ i wm ool o
. IR . S8 LD INn OO0~ O I ] i i il i
dissolved oxygen (DO} in a pool measured at various temperatures are §2 8 dosrdegdenrg | = "
. e p . . . (sl a Bl on TR A IS0 Mo n T onl - =1 =N
shown in Ifig. 7.3, Although a linear relation may he used to deseribe the - 2 ™ a = M
gcneml tre.nd 1:)(3L\-\"0011 each pair of variables, predictions based on such o mazgenansa | 8 @
linear relationships may overestimate (in certain ranges of the variables) or %98 rg‘ TT AN 0V | o
underestimate {in other ranges of the variables) the expected result. IFor e —
_gxeum:;lc, the linear regression line 1;1. Iig. 7.30 \:-*ill underestimate 1;1_10, AVOTHES §Eg. |mmemtnorwag |
DO at temperatures between 23° and 24°C, but may overestimate the wna
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| gyerage DO between 24° and 26°C. In such eases, o nonlinear relationship
'1“, ween the variables would he more appropriate. The determination of

i nonlinear relationships on the basis of observational data invoelves

Nonlinear regression is usually based on an assumed nonlinear (mean-

'vqiuo) funclion with certain undetermined cocfficients that would be

pvaluated from the experimental data. The simplest type of nonlinear
function for the regression of ¥ on X is

E(Y {2) = o+ 8y(2) (7.18)

where ¢(®) is a predetermined nonlinear funetion of = IFor example,
g{x) may be x4 2% e, Inz, or any other funetion of a. Finally, nonlincar

i regression analysis is usually based on the assumption of a constant
1 yariance Var (¥ | #), or a variance that is a function of g(z}.

By defining o new variable 2" = g(«), Iiq. 7.18 becomes

B(Y | o) = o+ g (7.19)

1+ which is of the same mathematical form as the linear regression cquation

ol .IC(';. 7.1. 1f the observed data pair (x, ;) is also fransformed to

: [ge:), yodor (x5 wi), the original problem of nonlinear regression between

@ 'md i is thus converted to a linear regression between the variables 27

a.nd y. The corresponding regression cocflicients o and 8 and Var(Y | 2)

an then be estimated from Bos. 7.2, 7.3, and 7.5, respectively.

EXAMPLE 7.5

The average all-day parking cost in the central business district of United States

i, cities may be expressed in terms of the logarithm of the urban population: that is,
- modeled with the following nonlinear regression equation:

E(Y|xy=wo+fflnx

with a constant Yar (¥ | x), where

Y = average all-day parking cost (in doilars)
x = urban population {(in thousands)

#

Determing (he estimates for.e, £, and Var (¥ | x) on the basis of the observed data

referred (o in Fig. 7.2 and given in Table E7.5.

The required computations for the regression analysis are summmarized in Table
E7.5; from these results we obtain the mean-value lunction

E(Yix) = —0773 +0.2441Inx

i

and
% o = 0.013

or

Sy = 011
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Figures E7.5¢ and E7.56 show this regression curve in semi-logarithm;, ,
ang

arithmetic scales, respectively.

EXAMPLE 7.6

An exponential model may be used for predicting the avera
from the average pool temperature T that is,

DO = w7

Estimate the coeflicients « and # based on the data portrayed in Fig. 7.3,
Taking the logarithm on both sides of the equation given above, we have

lnITﬁ::lnocmﬁT

it may be observed that the right side of this equation is a linear function of T n '

troducing the variables,
Y =InDO
x = =7

the nonlinear problem, therefore, is reduced to that of a linear regression,

EInDO|Ty=Ina — pF

T‘hat isl

or
E(Y|x) =Ina + fx

In ;En's case, therefore, th.e origipal data are first converted from (DO, Tato (in BO
- T,) and are then used in the linear regression analysis. On this basis, the regressio;;

'g_¥ T T I T T )
8f— u
T N
< B
o
£ 5}
- e -~ ¥ T
= DO = 50.9¢701123
] r = =083 B
o
o
B § - §
o
&
o
g
a., 2 % kg —
i 95 % Confidence Limits-~ :‘4
A j i | | |
23 24 25 26 27 28 29

Averoge Pool Temperature , T, °C

Figure E7.6 Weighted average pool DO and temperature relationship (after
Butts, Schnepper, and Evans, 1970)

ge DO concentragiq,
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Cocﬁacicnis are estimated to be
Iné = 3.93 and = 0.1123
Hence the exponential model is obtained as
In DO = 3.93 — 0.1123T
or DO == B93-0.11280 50 g0 11230

This regression equation and the associated 959%, confidence interval are shown in
The form of nonlinear {functions assumed in I9q. 7.18 can be generalized

g follows:
E(Y [2) = o+ fun(x) + foga() + oo v A Bugu(2)

where g;{z), 7 = 1, 2, . . ., m are predetermined funetions of the inde-
endent variable x. An example of Eq. 7.20 is the following general poly-
nomial relation:

LY [ 2) = o+ fha A Bt A e o Gua™
We now observe that by the conversion z; = g¢;{x), Fq. 7.20 hecomes
E(Y‘ 1 .’1}) = o + ﬁlzl + T + .Bmzm

Hence, by considering each of the functions g;(z:) evaluated from the
original data set @y, the nonlinear problem of Bq. 7.21 is reduced to that of

(7.20)

(7.21)

47 a multiple linear regression, presented ecarlier in Section 7.2.

E':2 7.4. APPLICATIONS OF
ENGINEERING

REGRESSION ANALYSIS IN

32 Regression analyses have been used widely in practically all branches of

Y engineering  for obtaining cmpirical relations between two (or more)

i variables. Sometimes the necessary relationship between two engineering

- variables cannot be derived on the basis of theoretical considerations; in
- these cases the required relationship may be determined empirically on the
 basis of experimental observations. Ior example, by plotting the logarithm
< of the observed latigue life N of a material versus the logarithm of the
© applied stress range S, a linear trend is observed as shown in Fig. 7.4.
< This trend can be represented by

log N = log ¢ — blog S

2 Lincar regression of log N on log S would then yield the constants o and
- b, This regression equation also suggests an S-N relation of the form

N Sb =
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Mexico City Clay by Rutleage

Compressicn Index, Cc
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Void Rotio, e

Figure 7.6 Compression index vs. void ratio (after Nishida, 1956)

In other situations the mathematical form of a required relationship may
be derived or postulated from physical considerations; regression analysis
may then be used to determine the values of the parameters, or to assess
the validity of the theoretical eguation, on the basis of observational data,

For example, Smeed (1968) postulated that the peak flow of traffic
(In passenger car wnet, peu) into the center of a city is

Q = afam

where fis the fraction of the city center that is oceupied by roadways; 4
s the area of the eity center in square feet; and « is a constant depending
on the speed of the traffic and the efficiency of the read system. Basically,
this cquation is based on the hypothesis that the volume of traffic that can
enter the central avea is proportional to its cirecamference. Data from 35
dties, including 20 from Britain, are shown plotted on log-log paper in
Fig. 7.5, Least-squares linear regression of log {Q/) onlog A yields & slope
of 0.53 for the regression line; Smeed’s equation would be equivalent to a
slope of 0.5. Also, from the regression line of Fig. 7.5, the constant « can be
determined as the value of Q/f at 4 = 1.

Some engineering variables ean be measured more readily and econom-
deally than others; for example, initial void ratios of clay samples can be
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Figure 7.7 Relationship of aceelerated to 28-day strength; combined field data
from nine jobs across Catada {after Malhotra and Zoldners, 1969)

mexpensively measured in the laboratory whereas the direct determi-
nation of the compression index may require considerable labor and time,
Jonsequently, if an empirical relation is established between the void ratio
and the compression index of soils, such as the relation shown in Fig. 7.6,
we can simply measure the void ratio and predict the compression index
by using the regression equation. Another example is the determination of
conerete strength. Normally the compressive strength of concrete specimens
is tested after 28 days of curing. At the present rate of construction, 28
days would be a relatively long period; methods of early determination of
concrete strength have been suggested, such as using an accelerated
strength (based on an accelerated curing process), Figure 7.7 shows the
results obtained by Malhotra and Zoldners (1969), which indicate 8

linear calibration between the two strengths. In traffic engineering, Heath- ™

Ington and Tuft (1971) have also succeeded in lincarly calibrating the
short-interval traffic volume with long-interval traflic volume in six Texas
cities; some of these results are shown in Fig. 7.8.
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O 5ot R Above Chillicothe, Ohio T ]
L. & Pomlmﬁc R, Above Wcshing!c_m, D.C. 0 .
Table 7.1. Multiple Regression for Estimating Trip Generation — : \S/c:: sl:?ogé .Aﬁﬁlfeoe'ﬁgff?é, T;oxlc;d .
Tnd d . — © Hudsen R, Above Troy, New York
n E}?en ent Regressmn & Deleware R. Above Trenton, New Jersey
variables equations S¥izg vensrz » O Apaiochicola-Chattahoochee R, Above
' ' Tn . Chottaheoches, Florida
X, X, X3, X = 4.3 Vv Allegheny R. Abeve Natrons, Penn.
1, g, X, X Y =433 +389X, 0.87 0.837 0 Mississippl R. Above Winono, Minn.
- 0.005 X,
o =
- 0128 X, & %, =200 miles .
- 0.012 X, 5 Qg * Flow At 200 mlle Stotion -
Xs, Xe Y =380 4379 X, 0.87 0.835 I
—~ 0.003 X, - -
[+
X, X, Y = 549 1.02 0.764 E §
— 0.0089 X, 5
+ 0.227 X, “ o
X Y = 2.88 +4.60X, 0.89 0.827 - .
X, Y =792 1.10 0.718 _ i
- 0.013 X, _
X, Y = 3.07 +044 X, 1.20 0.655 —
Xy Y = 3.55 +0.74 X; 1.30 0.575 TR | Co Lo o
nl . . kOi : [ l[
Y = Expected number of resident’s trips per dwelling unit %007 0. : °
X = Automo'blle own‘ersilip (no. per dwelling unit} Relative Distonce, x/x,
Xy = Population density (no. per net residential acre) :
X3 = Distance from central business district (miles) Figure 7.11  River flow vs. distance downstream (after Shull and Gloyna, 1969}
X, = Family income (thousand dollars)
Aluitiple linear regression alse finds many applications; for example,
avtin et al. (1963) used multiple linear regression to obtain the expeeted

umber of trip generations ¥ per dwelling unit in a community as a fune-
tion of automobile ownership Xy, population density X, distance from the
entral Business distries X, and family income X

Y = 4.33 4+ 3.890 X1 — 0.005 Xy — 0.128 X,
— 0012 X,

Miles Of Trovel

‘Other multiple lincar regression analyses were also performed for ¥ based
on fewer Dsdependent variables. The resuits of these analyses are sum-
marized n Table 7.1, It ean be observed frem the values of ¢ that the
proportion of the varianee reduced by taking aceount of the linear trend
generally inerenses with the munher of variables ineluded in the regression
analysis.

o 110 | - i

1G 20 30 50 100 500 {000 5000 10,000
City Populatien In Thousands

Figure 7.10 Work trip distance by city size (after Voorhees, 1966)
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Nonlinear regression is also widely used in engineering. Aside from those
described earlier in Examples 7.5 and 7.6, Fig. 7.9 shows an application
;nvolviﬂg the logarithmic transformation, in which the average stress per
evele of repeated loading is plotted against the Jogarithm of the number
0} eycles to failure of concrete bheams. This is another example of the
§-N diagram for the average fatigue Iife. In this case, because of large
variability in concrete strengths, a wide scatter is observed. Figure 7.10
shows that the average distance of travel to work may be Hnearly related
to the logarithm of the city population; as the population in a city increases,
the city spreads out to the suburbs and the average distance of travel to

© work also increases. An example of a double logarithmic transformation is

shown in Fig. 7.11, where the logarithm of river flow increases linearly with
the logarithm of distance downstream; similarly, Fig. 7.12 ghows that the
maximum sustained wind speed and the radial distance from the center of
o hurricane also follow approximately a log-log relationship.

Polynomial functions are also often used in nonlinear regression. A
third-degree polynomial curve is shown in Fig. 7.13 to describe the mean
vehicle speed as a function of the traffic density.

75, CORRELATION ANALYSIS

7.5.1. Estimation of correlation coeflicient

The study of the degree of linear interrelation between random variables is
called correlation analysis. Recall that in regression analysis, we are in-
terested in predicting the value of a variable (or estimating associated
probability) for givefi values of the other variables. However, the accuracy
of a linear prediction will depend on the correlation between the variables.

Mathematically, the correlation between two random variables X and
Y is measured by the correlation coefficient defined in Eq. 3.73 as

, = Cov (X, Y) _ EL(X — px)(Y — py)]

oxoy axoy

Based on a set of observed values of X and Y, the correlation coefficient
may be estimated by

o L D@ Aoy | 1 Dot ni g

n -1 S8y n—.1 88y

where #, §, s, and s, are, respectively, the sample means and sample
standard deviations of X and ¥. The value of 5 also ranges from —1 to +1
and is a measure of the strength of linear relationship between the two
variables X and Y. If the estimate 5 is close to +1 or —1, there is strong
linear relationship between X and Y, and linear regression analysis may be
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carried out to obtain the regression equations, On the other hand, if 5~ 0,
this would indicate a lack of linear relationship between the variables;
such a case is illustrated in Fig. 7.14 between the modulus of rupture and
the modulus of elasticity of laminated wood besms.

From Iqgs. 7.3 and 7.22 it can be shown that

y 2@ =By~ ) s
g Z{x: — £)° 8y

A 8

= 5 (7.23)

Sy
This s & useful relationship hetween the estimate of p and the regression
cocflicient 8. Farthermore, hy substituting T, 7.23 inte Eq. 7 .5, we ohtain

. 1 8 2

Var(¥ ) = [z(y,- - )t = 5 B - ,6)]
n— 92| 5

n—1 ) x .

== ”“:2 8y (1 - p) (7..,),4:)

7.5. CORRELATION ANALYSIS a7

from which we also have

n - 2 sy, (7.95
A T e e 2XZ 25)
P : n—1 gt

; which is equal to 7* of Eq. 7.6 for large n. On this basis, therefore, we can

ay that the larger the value of | 5 | the greater will be thfa reduction in the
i&riance when the trend between the variables is taken into account, a‘nd
hence the more accurate will be the predietion based on the regression

equation.

EXAMPLE 1.7

¢ : . and corresponding uncon-
In Table E7.7 are shown the data on blow counts N; an Lnco!
fined compressive strength of very stiff clay ¢;. These data are also shown in Fig,

1.7. . o
F On the basis of these data, estimate the correlation coefficient § between the blow

iff clay.
ount and the unconfined strength of stiff clay o
¢ The required calculations are indicated and ‘summe_n"lzed in Table E7.7. From
these results, we estimate the correlation coefficient using Eq. 7.22 to be

1[492.77 — 10{18.7)(2.12)]
V95.65vV1.24

This indicates that there is very high correlation between blow counts and the un-

= 0.98

jo=

Table E7.7. Computations for Example 7.7

Compressive
Blow counts strength (tsf)
N, %’i N ‘hz N,
0.33 16 0.11 1.32
g 0.90 64 0.81 7.20
11 1.41 126 1.99 15.51
16 1.99 256 3.96 31.84
17 1.70 289 2.89 28.90
19 2.25 361 5.06 42.75
2i 2.60 441 6.76 54.60
25 27 625 1.34 67.75
32 13 1024 11.09 106.56
34 4,01 1156 16.08 136.34
E 21.23 4358 56.09 492,77
187 o 21.23
= =187;§ === = 2.12
N = 10 18.7; § 5

21 —
sp% = 34358 — 10(18.7)%] = 95.65; 52 = 5[56.09 — 10(2.12)°] = 1.24
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Figure F7.7  Unconfined compressive strength vs, blow counts for stiff clay

confined compressive strength of stifl clay; on this basis, therefore, the biow count
may be used 1o estimate the unconfined strength of stiff clay,

EXAMPLE 1.8

FFor the data recorded on the Monocacy River (described earlier in Examples 5.8
and 7.2), estimate the correlation coefficient between runoff and precipitation.

Based on the computations tabulated earlier for Example 3.8, we obtain the
sample variance of precipitation 5,* = 1.53; and the sample variance of runoff 8, =
0.36. From the calculations in Example 7.2, we also have

Xpvp — 2558 = 59,24 — 25(2.16)(0.80) = 16.04

Hence
L. (1f24)(16.04)
P

e w2 (0,00
V1.531V0.36

The correlation coeflicient is required when ealeulating the joint prob-
abilitics of two or more random variables that are jointly normmal (see
Iixample 3.25). However, for non-normal varintes the quantitative role of
the correlation coeflicient, in the computation of joint probabilities is
seldom defined. Nevertheless, the correlation eooffieient is a measure of
linear interdependency between two random variables irrespective of their
distributions.
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pultiple correlation. When more than two random variables are in-

valved, as in the case of multiple linear regression of Kq. 7.16, any pair of

yariables may be mutually correlated, for example, between X; and X, or
petween Y and X the corresponding corveiation coeflicients are
BLAX: — pr) (X — ;)] X
PXLX; (7.25)

OX O

. and can be estimated as

R 1 (Z"ﬁ Tl — ??.’f,‘f ) X
XXy = T = : - . (7.26)
n—1 8581

: 7.6. CONCLUDING REMARKS

The statistical method for determining the mean and variance of one

random variable as a function of the values of other variables is known

- a8 regression analysts. On the basis of the least-squares eriterion, regression
©analysis provides a systematic approach for the empirical determination

of the underlying relationships among the random variables. Furthermore,
the associated correlation analysis determines the degree of Linear inter-

o pelationship between the variables (in terms of the correlation coefheient) ;

a high correlation means the existence of a strong lnear relationship be-

Ctween the variables, whereas a low correlation would mean the lack of
linear relationship (however, there could be a nonfinear relationship).

Regression and correlation analyses have applications in many areas of
enginecring, and are especially significant in situations where the necessary

- relationships must be developed empirically.

PROBLEMS

7.1 Assume hypothetically that the concentration of dissolved solids and the
turbidity of a stream are measured simultancously for five separate days,
selected at random throughout a year. The data are as follows.

Dissolved solids  Turbidity
Day (mg/1) JTw)
i 400 5
2 550 30
3 700 32
4 800 58
5 500 20
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7.2
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Because (urbidity is easier to measure, a regression equation may be used
predict the concentration of dissolved solids on the basis of known turbidigy
Assume that the variance of dissolved solid concentration is constant Wiili
turbidity,
(a) What are the values of the intercept and slope parameters (e and /) op
the regression line? Ans. 364.1; 7.79.
(b) Estimate the standard deviation of dissolved solid concentration aboyg
the regression line. Ans. 58.8.

Suppose that data on the consumption of water per capita per day have beep
collected for four towns in the Midwest and tabulated as follows (sec alsg
Fig. P7.2).

x Per capi)ta water
Population consumption (in
Town (in 109 100 gal/day)
i 1.0 1.0
2 4.0 1.3
3 6.0 1.3
4 9.0 1.4

(a) If the effect of population size of a town on the per capita consumption
is neglected, determine the sample variance s,

{b) From the observed data, there seems to be a general trend that the per
capita water consumption increases with the population of the town.
Suppose it is assumed that

E(Y|x) = a + fix

and Var (Y i x) is constant for all x.

z 4
~
&
5 ol .
o
8
g- =] el ° s
3
Q
&
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2
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£ 10f-s
| | .~
Q 5 10 X

Papulation, in 107

Figure P7.2
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(i) Determine the least-squares estimales for o and 7.
(if) Estimate 5%,

{c) An engincer is interested in studying the consumpiion of water in
Urbana (a town with 50,000 population). Assume a normal distribution
for Y; determine the probability that the demand for water in Urbana
wili exceed 7,000,000 gal/day.

7.3 Dissolved oxygen (DO) concentration (in parts per million, ppm) in a
stream is found to decrease with the time of travel downstream (Thayer and
Krutchkoff, 1966). Assume a linear relationship between the mean DO and
the time of travel 1. Determine the least-squares regression equation and
estimate the standard deviation about the regression linc from the following
set of observations.

DO (ppm) Time of travel 7 (days)

0.28 0.5
0.29 1.0
0.29 1.6
0.18 1.8
0.17 2.6
0.18 32
0.10 38
0.12 4.7

1.4 From a survey of the effect of fare increase on the loss in ridership for transit
systems throughout the United States, the following data were obtained,

X Y
Fare increase  Loss in ridership
(%) (%)
5 1.5
35 12.0
20 7.5
15 6.3
4 1.2
6 1.7
18 1.2
23 8.0
38 1.1
8 3.6
12 37
17 6.6
17 4.4
13 4.5
7 2.8
23 8.0




322 REGRESSION AND CORRELATION ANALYSES

(a) Plot the percent loss in ridership versus the percent fare increase.

(b) Perform a linear regression analysis fo determine the expected percey,
loss in ridership as a function of the percent fare increase.

(¢) Estimate the conditional standard deviation s g Ans, 0.82.

(d) Bvaluate the correlation coefficient between X and Y. Ans. 0.97,

7.5 Data for per capita energy consumption and per capita GNP output for eighy
different countries are tabuiated below (data extracted from Meadows et al

1972).
X Y
600 1,000
2,700 T00
2,500 1,400
4,200 2,000
3,100 2,500
5,400 2,700
8,600 2,500
10,300 4,000
Note that

X = GNP in U.8. dollar equivalent per person per year
¥ = energy consumption in kilograms of coal equivalent per person per year

{(a) Plot the data given above in a two-dimensional graph.

(by Determine the correlation between GNP and energy consumption,

(¢} Determine the regression for predicting energy consumption on the
basis of per capita GNP output. Draw the regression line on the graph
of part (a).

(d) Evaluate the conditional standard deviation Sy e and sketch the sy,
band about the regression line of part (c). '

(e) Similarly, determine the regression equation for predicting GNP on the
basis of energy consumption, and display this graphically with the
corresponding sy, band.

7.6 A tensile load test was performed on an aluminum specimen. The applied
tensile force and the corresponding elongation of the specimen at various
stages of the test are recorded as follows.

Tensile {orce Elongation
(kips) (10-% in.)

X ¥

1 9
2 20
3 28
4 41
5 52
6 63
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(a) Assume that the force-elongation relation of aluminum over this range
of loads is linear, Determine the least-squares estimate for the Young’s
modulus of this aluminum specimen. The cross-sectional area of the
specimen is 0.1 sq in., and the length of the specimen is 10 in. Young's
modulus is given by the slope of the stress-strain curve,

(b) In addition to the assumption of a linear relationship between force and
elongation, suppose zero elongation should correspond to zero tensile
force; that is, the regression line is assumed to be

E(Y|x)=fx
What would be the best estimate of Young's modulus in this case?

7,1 The population in a community for the years 1962 to 1972 is tabulated as
folows.

Year Poputation
1962 24,010
1963 24,540
1964 24,750
1965 25,100
1966 25,340
1967 25,820
1968 26,100
1969 26,200
1970 26,500
1971 26,800
1972 27,450

It is suggested that the population in a given year will depend on the popula-
tion of the previous year, as predicted from the following model:

xX;=a +bx,; +s

where x, and x,_, are the population in the sth and (¢t — 1)th year, respec-
tively, and ¢ is a normal random variable with zero mean and standard
deviation o.
(a) Based on the given population data, determine the estimates for a, b,
and a.
(b) Based on the population model and the estimates from part (a), estimate
the population in 1973, What is the probability that the population in
1973 will exceed 28,0007
7.8 The peak-hour traffic volume and the 24-hour daily traffic volume on a toil
bridge have been recorded for 14 days. The observed data are tabulated as
follows.
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: Cominualion
, :
Pea]{hour 2;4”‘ - ‘ Flevation North latitude Avcr‘fxge duration
traffic volume traffic volume weather station (1) (deg) of frost (days)
(in 10°) (in 10%) ~parsons 1,649 19.10 410
Pickens 2727 38.66 56.0
1.4 1.6 Piedmont 1053 39.48 34.0
22 23 Rainelle 2424 37.97 37.0
24 2.0 Spencer 789 38.80 16.0
27 22 Wheeling 659 40.10 410
% ? %2 Williamson 673 37.67 12.0
3.6 2.1 e
4.1 3.0
3.4 3.0
4.3 3.8 . , : W . - ,
53 51 Perform a mulll;)i_e ll]]c&!‘ regression analysis to predict the average duration
59 40 of frost at a locality in terms of its elevation and latitude.
6.4 1.8 710 The difference between the photogrammetrically triangulated elevation—-
4.6 4.2 before adjustment-—and the terrestrially determined elevation is an example
of measurement error in photogrammetry, This error in elevation E has been
observed and theoretically shown to be 4 nonlinear function of the distance X
along the centerline of a triangulated strip as follows:

Assume that the conditional standard deviation sy
x from the origin,
(a) Determine the regressiont line E(Y | x) = & + fx.
(b} Estimate the prediction error about the regression ling, that is, sy,
{c} H the peak-hour traffic volume on a certain day is measured to be 31500
vehicles, what is the probability that more than 30,000 vehicles will be -
crossing the toll bridge that day?

| Varies quadratically with .: E =a + bx 4 cx?
Estimate the least-squares values of «, b, and ¢ on the basis of the following
measurements. Ans, —0.023, 0.235; 0,347,

7.9 The average durations (in days) of frost condition each year at 20 stations in

West Virginia were compiled as foliows (from Moutton and Schaub, 1969), - Distance along centerline

of triangulated strip Error in elevation
X £
{kim) (m)
Elevation North latitude Average duration

Weather station (ft) (deg) of frost (days) 0 0

0.5 0
Bayard 2375 39.27 73.0 1.2 —-0.3
Brandywine 1586 38.63 29.0 1.7 —0.6
Buckhannon 1459 39.00 28.0 2.4 —14
Cairo 680 39.17 25.0 2.7 —~2.0
Charleston 604 38.35 11.5 3.4 —3.1
Fairmont 1298 39.47 32.5 3.7 i (b
Flat Top 3242 37.58 64.0
Gary 1426 37.37 13.0
Kearneysville 550 39.38 23.0
Lewisburg 2250 37.80 37.0
Madison 675 38.05 26.0 ) . . o i
Marlington 2135 1823 731.0 A1 The average distance ¥ required for stopping a vehicle is a function of the
New Martinsville 635 39.65 247 speed of travel of the vehicle. The following set of data were observed for 10

carg at varying speeds,
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Stopping Suppose that the following relationship is used to estimate the mean oxygena-
Speed distance 4 tion rate PR
Car (mph) (fy : E(Xi Vi) = Vi HP:
] ae Py ' Estimate «, §,, and f, on the basis of the observed data.
5 Ls (: The compressive and fiexural strengths of nonbloated burned clay aggregate
3 60 110 i concrete are measured for 30 specimens after 7 days of curing. The data are
4 30 46 : {from Martin et al., 1972) as follows.
5 10 13 u
.(; ?g ?? 7-day compressive  7-day flexural
3 P 7(; strength, X strength, ¥
(psi) {(psi)
9 45 90
10 20 A0 1 1400 257
“““ N 2 1932 327
3 . . 3 2200 317
(&) Plot the stopping distance vs. speed. 4 2935 300
(b) Assume that the mean stopping distance varies linearly with the speed 5 2665 340
that is, ’ 6 3800 340
EQ(Y|x) = o + fx 7 3065 343
Estimale « and 3; and sy, which may be assumed to be constant, 8 3200 g;f;
() A nonlinear function is suggested (o model the stopping distance-speeg 2 2200
relationship as follows: 10 2530 386
i1 3000 383
E(Y|x) =a + bx + ex? o 12 2735 393
- 40
Estimale a, &, and ¢; and 537 1 which is assumed to be constant with X, : ;i %% 4OZ
(d) Plot the two regression curves obtained from parts (b) and (¢). Compare 15 3235 407
“ the relative accuracy of prediction between these 1two models. s 16 2630 434
712 The mean rate of oxygenation from the atmospheric reaeration process for a . 17 3030 427
stream depends on the mean velocity of stream flow and average depth of the 18 3065 440
stream bed. The following are data recorded in 12 experiments (Koth g 19 2735 450
apdaraman, 1968). 20 3835 440
: 21 3065 456
. 22 3465 460
Mean oxygenation rate  Mean velocity Mean depth 23 3600 436
X (ppm per day) V (ftfsec) H (1) . g‘; ;ggg 2;8
2272 3.07 3.27 _ 26 3365 490
£.440 3.69 5.09 27 3335 497
0.981 2.10 4.42 ' 28 3170 526
0.496 2.68 6.14 29 3600 546
0.743 2.78 5.66 30 4460 700
1.129 2.64 717
0.281 2.92 11.41
3.36 2, 12 . . .
Zigji 321 %éz (a) Plot the compressive strength vs. flexural strength on a two-dimensional
1.568 4.65 4.54 graph. . .
0,455 Y 9,50 {(b) Determine the correlation coefficient between the two strengths.
0.389 2.5 6.29 7.14  The settlement of a footing depends on that of the adjacent footing since they
. are subjected to similar load and soif conditions. Therefore some correlation
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Adlncon 8. The Bayesian Approach

Figure P7.14

g.1. INTRODUCTION

n Chapter & we presented the methods of point and interval estimation of
distribution parameters, based on the classical statistical approach. Such an
approach assumes that the parameters are constants (but unknown) and
that sample statistics are used as estimators of these parameters. Because
the estimators are invariably imperfect, ervors of estimation are unavoid-
able; in the classical approach, confidence intervals are used to express the

Vsl

exists between the settlement behavior of two adjacent {footings. The fo

. How'
is a set of data on the settlement of a series of foolings on sand. g

Footing  Settlement (in.) Footing  Setilement (in.)

é 823 { ;12 gg; degree of f;he.se errors.
3 0.54 13 0.78 - Asimplied carlier, accurate estimates of parameters require large amounts
4 0.70 14 0.77 of data. When the observed data are limited, as is often the case in engi-
5 0.75 15 0.79 wering, the statistical estimates have to be supplemented (or may even be
? ggg :g 8-79 uperseded) by judgmental information. With the classical statistical
3 0.95 18 0;§ : appmac}} there is no provision folr combining judgmental information with
9 1.00 19 0.63 ~observational data in the estimation of the parameters.
10 0.92 20 0.73 For illustration, censider a case in which a traffic engineer wishes to

- determine the effectiveness of the road improvemoent at an interseetion.
-Based on his experience with similar sites and traffic conditions, and on a
“traffic-aceldent model, he estimated that the average ocewrences of
“necidents at the improved interseetion would be about twice a year. How-
“ever, during the first week after the improved interseetion is opened to
“traffie, an accident oceurs at the interseetion. A dichotomy, therefore, may
-arise: The engincer may hold strongly to his judgmental belief, in which
“case he would insist that the aceident is only a chance oceurrence and the
“average accident rate remains fwice a year, in spite of the most recent
“aecident, However, if he only considers actual observed data, he would
- estimate the average accident rate to be once a week, Intuitively, it would
~ seem that both types of information are relevant and ought to be used in
determining the average aceident rate, Within the classical method of
statistical estimation, however, there is no formal hasis for such analysis.
Problems of this type are formally the subject of Bayesian estimation,

+ The Bayesian method approaches the estimation problem from another
. point of view, In this ease, the unknown parameters of a distribution are
2 assumed (or modeled) to be also random variables. In this way, uncertainty
- associated with the estimation of the parametors can he combined formally
329

From a row of 20 footings, 19 pairs of adjacent footings can be obtained ag
shown in Fig. P7.14. The degree of dependence between the settlements of
adjacent footings is described by the correlation coefficient.
(a) Estimate this correlation based on the 19 pairs of data. Ans. 0.768,
(b) (i;:s;;r;aule the coeflicient of variation of the seltlement of a footing, Ans.
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Figure 8.1 Prior PMT of parameter §

{through Bayes' theorem) with the inherent variability of the basic random
variable. With this approach, subjective judgments based on intuition
experience, or indirect information are incorporated systematically witli
observed data to obtain a balaneed estimation. The Bayesian method is
particularly helpful in enses where there i a strong basis for sucl Judg-
ments. We infroduee the basic concepts of the Bayesian approach in the
following sections.

8.2. BASIC CONCEPTS—THE DISCRETE CASE

The Bayesian approach has special significance to engineering design, where
available information is invariably limited and subjective judgment is
often necessary. In the ease of parameter estimation, the engineer often
has some knowledge (perhaps inferred intuitively from experienca) of the
possible values, or range of values, of a parameter; moreover, he may also
have some intuitive judgment. on the values that are more likely to oceur
than others. For simplicity, suppose that the possible values of a parameter
¢ were assumed to be a set of diserete values 6y, 4 = 1,2, ..., n, with
relative likelihoods p; = PO = 0;) as illustrated in Fig. 8.1 (O is the
random variable whose values represent possible values of the parameter 6},

Then if additional information becomes available (such as the results of
a series of tests or experiments), the prior assumptions on the parameter ¢
may be modified formally through Bayes' theorem as follows,

Let e denote the observed outeome of the experiment. Then applying
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payes’ theorem of Eq. 2.20, we obtain the updated PMTF for 6 as
PO =8) P{O =10,

po =tile = t=1,2,...,n (81)

2. Pie=16) PO =0)

il

‘Fhe various terms in Eq. 8.1 can be interpreted as follows:

Pe| © = §) = the likelihood of the experimental outcome e if
O = f;; that is, the conditional probability of
obtaining & particular experimental outcome
assuming that the parameter is 6;

P(0 = 8;) = the prior probability of & = 8;; that is, prior to
the availability of the experimental information e

P (8 = 0;]¢) = the posterior probability of © = ¢,; that is, the
probability that has been revised in the light of
the experimental outcome ¢

Denoting the prior and poesterior probabilities as P/(0 = §;) and
i PO = 8,), respectively, Eq. 8.1 becomes

P(ele = B.)P’(e = 3,)

PO =0;) =
2 Pllo=06)P (0 =0)

(8.1a)

. Fquation 8.1a, therefore, gives the posterior probability mass funetion of ©.
. {In general, we shall use " and * to denote the prior and posterior).

The expected value of O is then commonly used as the Bayesian estimator*

of the parameter; that is,

" = B(O]e) = 3 0.P(0 = 0,) (8.2)

=1

We may point out that in Eq. 8.2 observational data and judgmental
information are both used and eombined in & systematic way to estimate
the underlying parameter,

In the Bayesian framework, the significance of judgmental information

. 18 reflected also in the caleulation of relevant probabilities. In the ease
. above, where subjective judgments were used in the estimation of the
{5§:_:_ parameter 4, such judgments would be reflected in the calculation of the
. probability, for example, P(X < @), through the theorem of total proba-

*There are other Bayesian estimators depending on the assumed form of the “loss
- function”” {discussed in Vol. 1T}, Moreover, other prrameters of the posterior distyibu-
i ton may serve as the estimator instead; for example, the mode.



332 BAYESIAN APPROACH

bility using the posterior PMF of Eq. 8.1a. That is,

PX<a)=2PX<al0®=26)PO=0) (8.3)
fem}
This represents the up-to-date probability of the event (X < @) based on
all available information. It may be emphasized that in Eq. 8.3 the un-
certainty associated with the error of estimating the parameter (as re.
flected in P"7(6 = 4,)] is combined with the inherent variability of th;
random variable X )
To clarify these general concepts, consider the following examples,

EXAMPLE 8.1

Piles for a building foundation were initially designed for 250-ton capacity each.
however, this did not include the effect of high winds that occur only very rarely. On
such rare occasions, it is estimated that some of the piles may be subjected o loads a5
high as 300 tons. In order to assess the safety of the initial design, the engineer in
charge wishes to determine the probability of the piles failing under a maximum load
of 300 tons,

Suppose that from the engineer’s experience with this type of piles and the soi)
condition at the site, he estimated (judgmentally) that the probability p would range
from 0.2 to 1.0 with 0.4 as the most likely value; more specifically, p is described b
the prior PMF shown in Fig. E8.1a. The values of p are discretized at 0.2 intervals to
simplify the presentation. ‘

On the basis of this prior PMF, the estimated probability of a pile failine at ¢
of 300 tons would be (by virtue of the total pm%ability ti):eorcmp) gatalod

£ = (0.2)(0.3) + (0.4)(0.4) + (0.6)(0.15) + (0.8)(0.10) + (1.0)(0.05)
= 0.44

In order to supplement his judgment, the engineer ordered a pile of the same type
test-loaded at the site to a maximum foad of 300 tons. The outcome of the test shows
that the pile failed to carry the maximum load. Based on this single test result, the

;’I;;IF of p would be revised according to Eq. 8.1, obtaining the posterior PMF as
ollows:

P'(p = 0.2) = (0.2)(0.3)

(0.2)(0.3) + (0.4)(0.4) + (0.6)(0.15) + (08%0.1) + (1.0Y(0.05)
= 0,136

and, similarly,
P'(p = 04) = 0.364
Prip = 0.6) = 0,204
P'(p =0.8) =0.182
Pr{p =1.0) =0114
which are shown graphically in Fig. E8.15.
The Bayesian estimate for p, Eq. 8.2, therefore is
P =E(p| &) = 0.2(0.136) + 0.4(0.364) + 0.6(0.204) -+ 0.8(0.182) + 1.0(0.114)
= 0.55
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P'{p=p;)

J

.40

0.30

0 0.2 D.4 0.6 0.8 o) P
Figure E8.1a  Prior PMT of

In FFig. E8.1b, we see that as a result of the single unsuccessful load test, the
robabilities for higher values of p, are increased from those of the prior distribution,
resulting in a higher estimate for p, namely, p” = E(p | &) = 0.55, whereas the prior

. estimate was 0.44. Observe that the failure of one test pile does not imply the
© impossibility of such piles carrying the 300-ton load; instead, the test result merety

serves to increase the estimated probability by 0.11 (from 0.44 to 0.55). Figure E8.1c

© iliustrates how the PMF of p changes with increasing number of consecutive test pile

failures; the distribution shifts toward p = L0 as n - 00,

Figure I58.1d shows the corresponding Bayesian estimate for p; observe that after
a sequence of 6 consecutive failures the estimate for p is 0.90. If a long sequence of
failures is observed, the Bayesian estimate of p approaches 1.0-—a result that tends to

- the classical estimate; in such a case, there is overwhelming amount of observed data

P (pep;)

0.364

0204 a8z

0136 0.114

o}

0 0.2 0.4 0.6 0.8 1.0
Figure E8.1b  Posterior PMF of p
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Figure E8.1e PMEF of p for incressing number of test pile failures

to supersede any prior judgment, Ordinari ly, however, where observational data

are limited, judgment would be important and is reflected properly in the Bayesian

estimation process.

_ Now suppose that each main column is supported on a group of three piles. If the
piles carry equal Joads and are statistically independent, the probability that none of
the piles supporting a column will fail at 2 total column load of 900 {ans (300 tons
per pile) can be obtained by Eq. 8.3. Based on the posterior PMFE of Fig. E8.1b, and

denoting X as the number ol piles failing, the required probability is

PX = 0) = P(X =0]p =02)P"(p =0.2) + P(X = 0|p = 0HP"(p = 0.4)
o P =0 p
= (L813(0.136) + (0.60%(0.364) + (0.4)3(0.204) + (0.2)"(0.182)

= 0,163

LOP(p = 1.0
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Figure E8.1d  $" vs. no. of consecutive failures

EXAMPLE 8.2

A traflic engineer is inferested in the average rate of accidents » at an improved
road intersection. Suppose that from his previous experience with similar road and
traffic conditions, he deduced that the expected accident rate would be between one
and three per year, with an average of two, and the prior PMF shown in Fig. E8.2.
Occurrence of accidents is assumed 10 be a Poisson process.

During the first month after completion of the intersection, one accident occurred.

{a) In the light of this observation, revise the estimate lor »,

(b) Using the result of part (a), determine the prebability of no accident in the
next six months.

Solutions

(a) Let ¢ be the event that an accident occurred in one month, The posterior
probabilities then are
Ple|v = DP'(¥ = 1)

PO = = T e PGS T PG| v = P = 2) & Pl |7 = HP (0 = 3)
_ 121 /12)(0.3)
T I 03) T e V(16 0.4) + ¢ 17 (1/4)(0.3)
= 0,166

Simitarly,

Py = 2) = 0.41]
Py = 3) = 0423



336 BAYESIAN APPROACH

P )
!
0.4
0.3 0.3
0 I 2 3 Lo

v, per year

Figure E8.2 Prior distribution of »

Hence the updated value of v is
#7 = E(v{ &) = (0.166)(1) + (0.411)2) + (0.423)(D)
= 2.26 accidents per year
{b) Let A be the event of no accidents in the next six months. Then

PlA) = PA v = PG = 1) 4 P(A |2 = DP' (v = 2) + P(A ] = 3P"(s = 3)
= ¢"V30.166) + ¢ 3(0.411) + £~2(0.423)
= (L.346

8.3. THE CONTINUOUS CASE

8.3.1. General formulation

In Sectior! 8.2 the possible values of the paramoter ¢ {such as p in Example
8.1 and v in Example 8._2) were limited to g diserete set of valucs ; this wag
purposely assumed to simplify the presentation of the concepts underlying

f'ig)
A

Foe
g

Figure 8.2 Continuous prior distribution of parameter
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he Bayesian method of estimation. In many gituations, however, the value
“of & parameter could e In a continuum of possible values. Thenee, it
" pould be appropriate to asswne the parameter to e a continuous random
Seariable Dy the Bayesian estimation. In this case we develop the corre-
“ponding results, analogous to ligs. 8.1 through 8.3, as follows.

" Let © be the random variable for the paramecter of a distribution, with a

arior density function [ (6} shown in Fig. 8.2, The prior probability that 6
“will be between 8; and 8; 4 A6 then 18 (040, Then, il e is an observed
“experimental outcome, the prior distribution f7(8) can be revised in the

jight of e using Bayes' theorem, obtaining the posterior probability that 0

will bein {4, 8, + A8) as

Plel@)f (8 a0

Jr@nAl =

1

2o Pl onf (0. a0

Cwhere P(el0;) = P(ef8; <0< 0; 4 A6). In the limit, this yiclds

LLElnse)

- (8.4)
f Plel 61 () do

1 =

The term P (el 6) is the conditional probability or Jikelihood of observing

the experimoental ouleome e assuming that the value of the paramoeter is 4.
Henee 12(c ] 0) is a Tunction of ¢ and is commonly yeferred to as the kel
hood function of 8 and denoted L(0). The denominator is independent of 8;

- this s stmply o normalizing constant required to nake f7{0) a proper

density function. Fquation 8.4 then can he expressed as

0y = kL) (0) (8.5}

el

[ L/ (& n’ﬁg cand

where the normalizing constant & =

L{®) = the likelihood of ohserving the experimental culcome e assuming a
given §.

We observe from 15g. 8.5 that hoth the prior distribwtion and the hieli-
haod Tunetion contribute to the posterior distribution of 0. In this way, as
in the diserete case, the significance of judgment and of observational data
is combined properly and systematically; the forswer through f(8) and
the latter s L(0).

Analogous to the diserclte ease, T 8.2, the expected value of 6 is
commonly used as the point estimator of the parameter, Menee the updated
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estimate of the parameter 0, in the light of observational data ¢, is given by,
Wmmwogfgw@w (8.6,

iy ’
The uncertainty in the estimation of the parameter ean be include

the caleulation of the probability associated with a value of the under!
random variable, For example, if X is a random variable

d iy
yin g

P Sa) = [ PO <alo) o) (8.7

Physically, Iiq. 8.7 is the average prohability of (X < a) welghted by the
posterior probabilities of the parameter 6.

EXAMPLE 8.3

Consider again the problem of Example 8.1, in which the probability of pile
failare .a't a lo.ad of SOQ tons is of coneern; this time, however, assume that thg
probability p is a continuous random variable. If there is no (prior) factual ip.
formation on p, a uniform prior distribution may be assumed (known as the diffise

prior), namely,
f (=10

On the basis of a single test, the likelihood function is simply the probability of the
event & = capacity of test pile less than 300 tons, which is simply p. Hence the
posterior distribution of p, according to Eq. 8.5, is

fpy=kp.0)  0<Zp <]

1 el
kml:fpdp—l = )
JO ..

0<p g

in which the constant

Thus
Jrpy =2p 0<p gl
The Bayesian estimate of p then is
1
=l = ooy
9

=z {),667

If a sequence of  piles were tested, out of which r piles failed at loads less than the
maximum test load, then the likelihood function is the prebability of observing
r failures among the # piles tested. If the failure probabitity of each pile is p, and
statistical independence is assumed between piles, the likelihood function would be

L(])) = (’:) [)7‘([ s P)n---r

Then, with the diffuse prior, the posterior distribution of p becomes

=k (f:) P —=pyr 0 p <l
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" n —1
k= [ J ( ) P = pyrr dp]
o A\r

Yotn
)z pril = pyrrdp
o \r
Lin
)[)7’(] — Py dp
JaNF

1
J‘ /)T'['I(l — l))ﬂ“ﬂ' (1?)
]

: w]}Cre

" fhus the Bayesian estimator is

pr=Eple =

I
f;}"(i - Py dp

0

Repeated integration-by-parts of the above integrals yields

. 1
K e fu (Pn ___P'n-!-l) dp

a 1
[ (pvt ~ p®)dp

J0

o

r4+1

)

From this result, we may observe that as the number of tests » increases (with the
ratio rin remaining constant), the Bayesian estimate for p approaches that of the
classical estimate; that is,

r+ 1 ! f‘ . i -~
PRI g or large n

EXAMPLE 8.4

An engineer is designing a temporary structure subjected to wind load on a newly
developed island in the Pacific. Of interest is the probability p that the annual max-
imum wind speed will not exceed 120 km/hr. Records for the annual maximum wind
speed in the island are available only for the last five years; and among these, the
120 km/hr wind was exceeded only once. However, an adjacent island has a longer
record of wind speeds. After a comparative study of the geographical condition in
the two istands, the engineer inferred from this jonger record that the average value
of p for the newly developed island is 2/3 with a COV of 279%,. Since p is bounded
between 0 and 1.0, the following beta distribution (consistent with the above
statistics) is also assumed for the prior distribution:

fipy =200 —p)y  0<Lp <Ll

" In this case, the likelihood that the anaual maximum wind speed will exceed 120 kph

in one out of five years is

5
L(py = (4)1)‘1@ -
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Figure E8.4 Prior, likelihood, and posterior functions

Hence the posterior density function of P is

S7p) = kL) ()

= 4 i 5 L] 1 )
=i (oo

= 100kp™(1 — py?

1 71
k o= [J 100/)7(] - PR a}r)J = 3.6
9

1)

In this case, the prior density function is equivalent 10 the assumption of one
exceedance in four years, whereas the resuiting posterior distribution is tantamount
o two exceedances in nine years. In fact, the abave posterior distribution is the
same as that obtained for a case in which 1wo exceedances were observed in nine
years and a diffused prior distribution is assumed. This example should serve also 1o
illustrate a property of the Bayesian approach-—namely, that information from
sources other than the observed data can be useful in the estimation process.

The relation between the likelihood Tunction and the priar and posterior dis-
tributions of the parameter p is illustrated in Fig. E8.4. Observe that the posterior
distribution is “sharper” than cither the prior distribution or the likelihood
function. This implies that more information is “contained” in the posterior dis-
tribution than in either the prior or the likelihood function.

[20p3(1 — py)

where

Thus

i

360/)7(1 — /'))2 Q S]) <1

EXAMPLE 8.5

The occurrences of carthquakes may be modeled as a Poisson process with mean
oceurrence rate » (Benjamin, 1968), Suppose that historical record for a region A
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snows that m, earthquakes have occurred in the past f; years. The corresponding
ikelibood function is then given by
L{r) = Py quakes in 14 years | »)

O,
1!

if there is no other information for estimating », a uniform diffuse prior 11151}7 bci

assumed ; this impties that f"(v) is independent of the values of » and thus can be

absorbed into the normalizing constant k. Then the posterior distribution of »

pecoImes

=0

[y = kL(»)

\i
T o
) ( Iy o vy

» >0
!

Upon normalization, k = f,; this result may also be obtained by comparing the
foregoing ["(w) with the gamma density function of FEq. 3.44h (for the random
variable v). ‘ ‘ L o

The probability of the event (£ = a earthquakes in the next ¢ years in region 4) is
thent given by Eq. 8.7 as follows:

P(E) wa PUE vy f7(3) dv
o

£ 7 n
= [“ () ey to(vtg) iy

Vo gfp
!

Since the integrand inside the parentheses is a gamma density function, the integral

is equatl to 1.0, Hence

{n 4 my)!
ntag!

L] ft)( nof-1)

(! + fu)n 920731

o M
fv (, + IU) [p(ir + ,ﬂ)}“ o g-u‘(! IEg) ﬁ"i’) (” T ”0)!
1]

{n + n)! bt

rnr(,(nurrl}

(fty)™
(E _I__ f,l'fn) nt-ngfl

LI )
(f + tgyriretl Tty
¢ result that was first derived by Benjamin (1968),

© As an iilustration, suppose that historical records in region A4 sl_low that two
-earthquakes with intensity exceeding VI (MM scale) had (')ccuryed. in th.c? lz'ist [60
years. The probability that there will be no carthquakes with this intensity in the
next 20 years, therefore, is

P(E) =

(20/60)°
(1 F 207605

0 + 2)1
P(E)m(mz!

= (142

8.3.2. A special application of Bayesian up-dating process

.An interesting appiication of the Bayesian updating p].'o{:es,\q s in i.]ul,
; ial defeats (MTane. 107° atioue ar

“ingpection and detestion of material defeets (Tang, 1973). Fatigue anc

L i i structures are i 1y the result, of unchecked
“fpaeture failures in metal struetures are frequently the resul

: At N v Iyao dale 1Parie

| propagation of flaws or cracks in the joints (welds} or base mot(ﬂf‘s. ‘lt(,n
<bg J . 3 5 .. N y plale oture

odie inspection and repair can be used to minimize the risk of fracture
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[ 3

Erobaobitity Of Flow Detection

s i | | | g
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Flaw Size, in,

Figure 8.3 Dotectability versus actual flaw depth (data from Packman et al,,
1968}

failure by iimiting the existing flaw sizoes. Methods of detecting flaws, such
as nondestructive testing (ND'T), however, are invariably imperfect;
consequently, not all flaws may be detected during an ingpection.,

'The probability of detecting a flaw generally inereases with the fAaw size
and the detection power of the deviee. An example of a deteetability curve
for ultrasonies method is shown in Fig, 8.3, Henee, oven when a structure is
inspeeted and all detected flaws are repaired, it is difficult to ensure that
there are no flaws Jarger than some specified size.

Suppose that an ND'T deviee is used to inspeet a set of welds in o strue-
ture and all deteeted flaws are fully repaired. On the basis of this assumyp-
tion, the flaws that remain in the weld would be those that were not
The probability that a flaw size (for example, depth) will be between x and
(v 4 da) given that the flaw was not deteeted is, therefore,

PDla < X <o 4d)Pla<X <af d)

Pa<X<a4de|D) = D)

This can be expressed also in terms of density functions as
Ix@D) = kPO )y @) (8.8)

in whieh fy () is the distribution of the flaw size prior to inspeetion and
repair, whereas fy (o | 1) is the corresponding distribution after inspeetion
and repair. Also P(D ] x) =1~ P(D|2), where P(D ] 2) is simply the
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yrobability of detecting a flaw with depth @, which is the function defined

by the deteetability eurve, such as that shown in Fig. 8.3, Comparing 1Sq.

g 8 with I 8.5, we observe that Bq. 8.8 is of the same form as [3q. 8.5, with
+he following equivalences:

Fy (x| D) ~ the posterior distribution
P(D|z) ~ the likelihood {function
T () ~ the prior distribution
EXAMPLE 8.6

As an illustration, suppose the initial (prior) distribution of f}(:iw E%e;)tlls Xina
geries of welds has a triangular shape described as follows (see Fig. E8.6):

208.3x 0 < x <006
[ylr) = {20 — 125x 0,06 < x <0.16
‘ 0 x> 016

Assume also that the NDT device used in the inspection has the detectability curve
shown in Fig. 8.3; mathematically, this curve is given by

0 x <0
PD1x)={8x 0 <x <0125
1.0 x > 0125

Substituting the appropriate expressions for each interval of X into Eq. 8.8, we

Likelihood
15 Posterior
10— Prier
5i—
} j | .
0O 0.08 o0 015 X

Flaw Depth, in.

Figure E8.6  Distribution of flaw depth
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obtain the updated density function of flaw depths

. ~ (H x <0
S Dy = k(1 — 8x)(208.3x) 0 <x £0.06
(-~ BX)20 — 1254%) 006 < x £0.125
¢ x> 0,125
which, after normalization, becomes
~ 0 x g0
[x(x D)y = [495y — 3096442 0 <x <006

47.6 — 678x + 23792 0066 <x €£0.125

0 x > 0125
The above prior, likelikood, and posterior functions are plotied in Fig. E8.6. It ¢ap
be observed that the likelihood function, which is the “compiementary function"‘of
Fig. 8.3, behaves as a filter; it cuts off laws larger than 0.125 in. and also climinareg
many of the remaining larper flaws. Thus, after the inspection and repair program
the distribution of flaw depths is shifted toward smaller values, '

8.4. BAYESIAN CONCEPTS IN SAMPLING THEORY
8.4.1. General formulation

If the experimental outeome e in g, 8.4 is a seb of observed values
X1y By - ooy Ty veprosenting o random sample {see Scetion 5.2.1% from a
population X with underlying density function fy(x), the probability of
observing this particular set of values, assuming that the paramoeter of the
distribution is @, is 7

W
Pleid) = [zl da
il
Then, if the prior density function of © is [7(8), the corresponding posterior
density function becomes, according to liq. 8.4,

L s Ges o) cf:u]f’ ®

g

@) =

e bLog=]

= kL {0} (0) (8.9)

in which the normalizing constant is

- [ I (fI [Nen 6))%) dor

—oG N}

whereas the likelihood funetion L (0) is the product of the density function

8.4. BAYESIAN CONCEPTS IN SAMPLING THEORY 345

of X evaluated at 4y, @, . . ., 2, OF

L@ = o) (8.10)

Using the posterior density function for © of Eq. 8.9 in Eq. 8.6, we there-
fore obtain the Bayesian estimator of the parameter 6. It is interesting to

~ observe that the likelihood function of Eq. 8.10 is the same as that given

earlier in Eq. 5.4 in connection with the classical method of maximum
likelihood estimation. Furthermore, if a diffuse prior distribution is
agsumed (for example, as in Eg. 8.13), then the mode of the posterior
distribution, Fq. 8.9, gives the maximum likelihood estimator.

3.4.2. Sampling from normal population

In the case of a Gaussian population with known standard deviation o,
the likelihood function for the parameter u, according to Eq. 8.10, is

L n 1 1 T — p 2 3 n N
W = T oo | = 5 (352) ] = T Netes
where N, (z,, ¢) denotes the density function of p with mean value z; and
standard deviation . It can be shown (for instance, Tang, 1971) that the
product of m normal density funetions with respective means g, and stand-
ard deviations e; is alse a normal density function with mean and variance

Z (#1‘/0'{2) 1
u* = 3511;:-—-——— and  (o%)? = —eer {8.11)
Z 1/ E /o
i=l fol

Therefore the likelihood funetion L () becormes

1 (1/¢%) Z i 1

3 Garfe) >
= N.U TL/O'Z ] \/;}7}"‘5

n Lt ) ';‘—‘—‘—0-2
2 W) \/\;l (1/0%)

- M.(2.5%) (8.12)

where & 1s the sample mean of Eq. 5.1,

L{g) = N,

Without prior information. In the absence of prior information on
, a diffuse prior distribution may be assumed. In such a case we obtain
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the posterior distribution for 4, as

J () = kL (u)

o
(o 2)

a
= Ny (fﬁ, ;7?2) (8.13y
where k is necessarily equal to 1.0 upon normalization. Therefore, withoyt
prior information, the posterior distribution of g is Gaussian with a megp
value equal to the sample mean £ and standard deviation o/+/.
Using the expected value of p as the Bayesian estimater we obtain, i
accordance with Fq. 8.6,

i

=Bl =4

That is, the sample mean & is the point estimate of the pepulation mean,
We recognize that this is the same as the classical estimate of Fq. 5.1,
Therefore, in the absence of prior information, the Bayesian and classiea)
methods give the same estimates for the population mean. Conceptually,
however, the Baycesian basis for this estimate differs from that of the
classical approach, Whereas Eq. 8.13 says that the posterior distribution of
¢ is Gaussian with mean & and standard deviation ¢/ +/n, the classical
approach (of Sect. 5.2) says the sample mean X is a Caussian random
variable with mean g and standard deviation o/ /7.

Significance of prior information. In contrast to the classical ap-
proach, however, prior information can be included in the estimation of
the parameter g This is accomplished explicitly through the prier dis-
tribution f7(¢) ; we demonstrate this for the case of a Gaussian population
as follows,

In the case where X is Gaussian with known variance, it is mathe-
matically convenient to assume also a Gaussian prior (see Sect. 8.4.4),
Suppose that f{p) is N{(g’, o'}, Then, with the likelihood function of Iq.
8.12, the posterior distribution of u becomes

T () = RL S (w)

. a “
kN, (:v, 7};) N, o'
which is a produet of two normal density funetions, Again, it can be shown
that /" {u) s also Gaussian with mean

o 8/ o/ VY + T/ (0] _ () + i (o)
[1/(a/~1)¥] + [1/{e")?] {¢")? A (o*/n)

(8.14)
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and standard deviation

(o' )2 (0% 1) 2 15
(J’H on f? ? AT (8'1”)
(o'} + (/)

In this case the Bayesian estimator of g, 15, 8.6, yiclds

~ 1 1

o=
That iy, the Bayesian estimate of the mean value is an average of the prior
mean pf and the sample mean &, weighted inversely by the respective
varianees.

Tquation 814 is an example of how prior information is combined
systematically with ohserved data—in the present case, to esfimate the
mean value .

It is important to observe that the posterior variance of g, as given by

C T3q. 8.15, is always less than* (¢')2 or (¢®/n); that is, the variance of the

posterior distribution is always less than thas of the prior distribution or
of the likelihood funetion.

of Eq. 813 or N (u", o) with Figs. 8.14 and 8.15, we may also determine
the inferval Tor u corresponding to a specificd probability, For example,

the probahility that u is hetween ¢ and b is given by

/]
Pla<u<b) = [ ") du

. 8.4.5. ELrror in estimation

Any error in the estimation of a parameter ¢ can be combined with the in-

- herent variability of the underlying random variable, for example X, to

obtain the total uncertainty associzted with ¥. Accounting for the error in

= the estimation of 6, the density function of X becomes {by virtue of the

*Binee (o) 2 0, and o*/n > 0

o ot
(™ -+ (a7) (n) = () (,{)

e
TN
qw
ERER
N
v
s
~——

or

Similaely, it ean be shown that (o)} < o¥/n.



348 BAYESIAN APPROACH

total probability theorem)

@) = [ a0 0) d (5.16)

In the case of a Gaussian variate X, witl: known o, and g cstimateg
from sample data,

felz) = f e O ) du

where fx (x| p) = Ny, o), and f7 () s given by Eq. 813, Again it ean
be shown (for instanee, Tang, 1971) that this last integral yields the normg)
density function Ny (£, v/a* + o?/n); that is,

Ixle) = NE A+ ob/n) (&.17)

The overall uncerfainty in X here is reflected i its variance, o* -+ o¥/5,
which ig eomposed of the variance of the basic random variable X and that
of the parameter p. Bffectively, the error in the estimation of w serves to
inerease the total uncertainty in X, by an amount that decreases with the
sample size n.

EXAMPLE 8.7

A toll bridge was recently opened to traffic. For the past two weeks, records on
rush-hour traffic dusing the last 10 workdays showed a sample mean of 1533
vehicles per hour (vph). Suppose that rush-hour traflic has a normal distribution
with a standard deviation of 164 vph. Based on this observational information, the
posterior distribution of the mean rush-hour (raflic ¢ is, according to Eq. 8.13,
N (1535, 164/ V10) or N (1535, 51.9) vph. The point estimate of u, therefore, is
1535 vph.

The probability that s will be between 1500 and 1600 vpht is given by

PUS0D < ¢ < 1600) = (D(moo - 1535) B d)(isoo - 1535)

51.9 519

D(1.253) — B(—0.674)
= 0,6445

i

Of greater interest are probabilities associated with the rush-hour traffic (rather
than its mean) on a given workday. Suppose that for the present toll collection
procedure, serious problems would arise if the rush-hour traffic exceeds 1700 vph on
a given day. Then the probability that this will occur on any given day, based on
Eq. 8.17, is given by

P(XY > 1700) =1 — (]>(~

= | — D(0.958)
= (1,169

Iz other words, in about 179, of the working days, the present toll coflection system
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will be inadequate during rush hours. Observe that the error in the estimation of p
has been included in compulting this probability.

Now suppose that before the toll bridge was opened for traffic, simulation was

erformed to predict the rush-hour traffic on the bridge. Based on the simulation
results alone, it was estimated that the mean rush-hour trafficon a workday would
be 1500 & 100 with 909%, confidence. How can this information be used with the
observed traffic flow in the estimation of u?

Assuming a Gaussian prior and with the forepoing simulation results, we obtain
the prior distribution of the mean rush-hour traflic 4 to be N (§500, 60.8) vph. Then,
applying Egs. 8.14 and 8.15, the posterior distribution of # is Gaussian with

v 1535(60.8)* + 1500(51.9)
T (60.8)> + (51.9)*

= 1520 vph

and

@G _
o f-60.8)2 TGLoE 39.5 vph

- Therefore, by incorporating the result of simulation, the estimated mean rush-hour

traffic is 1520 vph and corresponding standard deviation is 39.5 vph.

EXAMPLE 8.8

Five repeated measurements of the elevation (relative to a fixed datum) of a
bridge pier under consiruction were made as follows:

20.45 m
20.38 m
20.51 m
2042 m
20.46 m

Assume that the measurement error is Gaussian with zero mean and standard
deviation 0.08 m.
(a) Estimate the actual elevation of the pier based on the given measurements.
(b) Suppose that the elevation of the pier was previously measured by another
surveying crew; the elevation was estimated to be 20,42 + 0.02 m (that is, the mean
measurement was 20,42 m with a standard error of .02 m). Estimate the elevation of

. the pier taking advantage of this prior information,

Solution
The estimation of an actual dimension ¢ in surveying and photogrammetry is

equivalent to the estimation of the mean value of a random variable (see Section

§.2.3). Measurement error is invariably assumed to be Gaussian with zero mean;
this means tacitly that a set of measurements constitute a sample from a normal
population. Therefore the results derived in Section 8.4.2 are applicable to the
estimation of geometric guantities in surveying and photogrammetry.

{(a) The sample mean of the five measurements is
£(20.45 +4- 20.38 4 20,51 4 20.42 4 20.40)

20444 m

Hence, on the basis of the five observations, the actual elevation of the pier has a

d

it
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Gaussian distribution N (20.444, 0.08/V'5) or N (20.444, 0.036) m. In the conventig,
of surveying and photogrammeltry, the elevation of the pier would be given s
20,444 4+ 0,036 m,

(b) In the case where prior information is available, such information can be
incorporated through the prior distribution of é. In the present case, using (he pier
elevation estimated carlier by another crew, the prior distribution of ¢ can pe
modeled as &V (20,420, 0.020) m. Then applying Eqs. 8.14 and 8.15, the Bayesiyg
estimate of the elevation is

A _ (20.420)(0.036 + (20.444)(0.020)*
¢ = (0.036)7 + (0.020)
= 20426 m

and the corresponding standard error is

oo | (O036(0.020)
¢ 7 A (0.036)F + (00200
= 0.0i7 m

EXAMPLE 8.9

The annual maximum flow of & stream has been recorded for the last five years ag
Toliows:
21.5,19.2, 23.4, 20,1, 18.1 (100 m*/sec)

Based on extensive dala [rom adjacent streams, the annual maximum stream flow
may be modeled by a log-normal distribution. Assume that the parameter {in the
log-normal distribution is equal to the value obtained from the five sample values,
The probiem here is to estimate the parameter 2.

In Chapter 4 (Example 4.2} it is shown that il a random variable Y is log-normai,
then X = In ¥ is normat. Hence the fogarithm of the stream flow will be Gaussian
with mean A and known standard deviation £,

The natural logarithm of the above data values are, respectively,

3.07, 2.96, 3.15, 3.00, 2.90

from which we obtain the sample mean £ = 3,016, and sample standard deviation
£ = 0.097.

Without any prior information, the posterior distribution of 2, according to
Eq. 8.13, is N (£, {/V'5) or N (3.016, 0.097/V'5) = N (3.016, 0.043).

If prior information is availabie, it can be incorperated through the prior dis-
tributien of A. For example, suppose that £'(4) is assumed 10 be N (2.9, 0.06); then
from Eqé‘.. 8.14 and 8.15 the posterior distribution f”(4) will be normal with

_ 3.016(0.06)° 4 2.9(0.0435)

M = 7006 + (004357 7 298
and
(0.06)%(0.0435
- =0
74 O00E T oasse — 009

That is, in this fatter case, the posterior distribution of 2 is N (2.98, 0.035},
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~ g4 Use of conjugate distributions

n deriving the posterior distribution of a paramecter hy g, 85 or 8.9
) ! ¥ 1 »

- eonsiderable mathematieal simplification ean be achioved if the distribution
= of the parameter is appropriately chosen with respecet to that of the under-
; lying random variable. We saw this in Sect. 8.4.2 in the case of the Gaussian

random variable X with known o; by assuming the prior distribution of u
o be also Gaussian, the posterior distribution of u remains Gaussian. This
was similarly demonstrated for the diserete case in Example 8.4, in which
the random variable has a hinomial distribution and the prior distribution
for ¢ was assumed to be a beta distribution {with parameters ¢’ = 4 and
¢ = 2}. The resulting posterior distribution for p is also a beta distribution,
with updated parameters ¢ = 8and v = 3,

Such pairs of distributlons are known in the Bayesian terminology as
confrgate pairs or conjugate distribulions. By choosing a prior distribution
that is a conjugate of the distribution of the underlying random variabie,

~eonveniont posterior distribution, which is usually of the same mathe-

matical form as the prior, is obtained, This has heen illustrated carlier in
the case of the normal-normal and the hinomial-heta distributions, Other
pairs of conjugate distributions may be developed; Table 8.1 summarizes
some of these involving eertain common distributions.

It should he emphasized that eonjugate distributions are chosen solely
for mathematical convenience and simplieity. For a random variable with o
gpecified distribution, its conjugaie prior distribution may be adopted if
there 1s no other basis for the choice of the prior distribution, However, i
there 1s evidence to support a particular prior distribution, then such a
distribution ought to be used, mathomatical complications noetwith-
standing.

EXAMPLE 8.10

The occurrence of flaws in a weld joint may be modeled by a Poisson process with
a mean oceurrence rate of u flaws per meter of weld. Actual observation with a

- powerful device (assume it would not miss detecting any significant flaw) detected 5
- flaws in a weld of 9.2 meters. However, from previous experience with the same type

of weld and quality of workmanship, the mean flaw rate is believed {0 be 0.5 flaw/m
with a COV of 40%,, Determine the mean and COV of « for this type of weld, using
the observed data as well as the information [rom prior experience.

Since the number of flaws in a given weld length is described by the Poisson
distribution, it is convenient, according to Table 8.1, to prescribe its conjugate
gamma distribution as the prior distribution for the parameter g From the in-
formation given above, and observing from Section 3.2.8 the mean and variance of
the gamma distribution, we have

r

" A
£ () = :ﬁ =: )5



Table 8.1 Conjugaie Distributions
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Basic random variable eter of parameter
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Tx(a) = ne = X
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. 1 [N
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and

SIS
¥y = R L
st Vi
Thus the prier parameters of the gamma distribution are k' == 6.25; and ¥ = 12.5,
It follows then that the posterior distribution of s is also gamma. From (he
relationships given in Table 8.1 between the prier and posterior statistics, and e
sample data, we evaluate the parameters &” and »* of the posterior gamma distriby.
tion as follows:

= 0.4

K' =" 4+ x =625 +5 = 11,25
o= =125 4 9.2 =217

Hence the updated mean and COV of the average flaw rate p are
k1125

() =

=T = 0.52 faw/m

&) = wm];:—_ = !

=010
Vi 1128

3.5, CONCLUDING REMARKS

In the process of engineering planning and design, judgmental ASEUMpP-
tions and inferential information are often useful and necessary. The
sighificance of such prior information and its role (in eombination with
obscrvational data) in the process of estimation are formally the subjeet
of Bayesian statistics. The basic coneepis of the Bayesian approach have
been introduced here with special reference to sampling and estimation,
Applications of these concepts in Bayesian statistical decision will he
covered in Vol. I1.

Philosophieally, there are fundamental differences between the Bayesian
and classical statistics, Within the Bayesian eontext, a probability or a
probability statement is an expression of the degree-of-belief, whercas in
the classical sense, probability is a verifiable measure of relative frequency.
Furthermore, in estimation, the Bayesian approach assumes that a param-
eter is a random variable, whereas in the classical approach it is an un-
known eonstant.

Relative to engineering planning and design, the Bayesian approach
offers the following advantages:

1. Tt provides the formal framework for incorporating cngineering
judgment (expressed in probability terms) with observational data.

2. 1t systematically combines uncertaintios associated with randomuness
and those arising from errors of estimation and prediction (see
Vol. 1T},

3. It providesaformal procedure for systematic updating of information.
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PROBLEMS

8.1

8.2

8.3

A new structure is subjected to proof lesting. Assume that the maximum proof
load is specified at a reasonably high level so that the caleulated probability of
the structure surviving the maximum proof load is 0.90, However, it is felt
that this caleulation is only 70% reliable, and there is a 25%, chance that the
true probability may be 0.50; moreover, there is even a 59, chance that it may
be only 0.10.

(a) What is the expected probability of survival before the proof test?

(b) If only one structure is prooi-tested, and it survives the maximum proof
load, determine the updated distribution of the survival probability,

{c) What is the expected probability of survival after the proof test?

(d) H three structures were proof-tested, and two of the structures survived
whereas one failed under the maximum proof load, determine the
updated expected probability of survivat.

A new waste-treatiment process has been developed. In order to evaluate its
effectiveness, the treatment process is instalied for a trial period. Each day the
output from the treatment process is inspected Lo sec if it satisfies 1he specified
standard. Suppose that the outputs between days are statistically independent,
and there is a probability p that the daily output will be acceptable. If the
prior PMF is as shown in Fig, 8.2, determine the posterior distribution of p
with each of the following observations.

(a) The output on the first day of the trial period is of unacceptable quality.

{(b) For a three-day trial period, the qualily is unacceptable in only one day.

{c} For a three-day trial period, the first two days are satisfaclory whereas
the quality is unacceptable on the third day.

In each case, determine also the Bayesian estimate for p. Ans. 0.536, 0.617,
0.617.

P

0.28 .25 0.25 0.25

0.4 0.6 0.8 1. P,
Figure P8.2

A hazardous street intersection has been improved by changing the geometric
design to reduce the accident and fatality rates. For simplicity, assume that
accident and fatality rates can be classified as high i or low L, leading to the
following possible conditions: H My (high accident rate, high fatality rate},
H Ly, LHpg, and LyLzp. Preliminary evaluation revealed that the relative
likelihoods for these four conditions are 3:3:2:2.

An accident rate prediction model, for example, the Tharp model, was used
10 oblain a better evaluation of the accident potential at this (improved)
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intersection. Because of possible inaccuracies in the prediction model, ,
predicted condition may not be actually realized. Furthermore, the Prob.
ability of a correct prediction depends on the underlying actual condition, g
indicated in the following table of conditional probabilities.

Actual
Predicted H, Hp H Ly L Hy L,Ly
Hy Hy 0.30 0.40 0.20 0.25
Hy Ly 0.30 0.30 0.20 0.25
La Hy 0.20 0.20 0.50 0.25
La" Ly 0.20 .10 0.10 0.25

,{)

{(a) What is the probability that the model will indicate H 1y ?
(b) Suppose that the model predicted H Hj; what is the probability that
the condition of the improved intersection will actually be H ;47
(¢) If the model predicted L) L%; what is the updated relative likelihoods

of the four possible conditions?
An instrument is used to check the accuracy of a set of measurements, How-
ever, it can only record three readings, namely x == 1, 2, or 3. The reading
x = 2 impiies that the previously measured value is within a tolerable error,

whereas X = | and x = 3 denote that the measurement is on the low and high
side, respectively. Suppose the distribution of Y is given as follows:

I —m

. Y, o= ]

2 i
Pl = m x, =2
I —m
Jo— x; =3

where m is the parameter. For a particular set of measurements, the engineer
estimated that the value of m would be 0.4 or 0.8 with equal likelihood.
However, on checking a set of measurements, the first one indicates x = 2,
{a) What should be the engineer’s revised distribution of m?
(b) Estimate the probability that at least two out of the next three measure-
ments will be accurate,
An engineer plans o build a log cabin in the middle of a forest where fogs of
similar size are available. He assumes that the bending capacity Af of each log
follows a Rayleigh distribution

. i ) 2
far(my = 7 o2 ls ) m 0

where the parameter 2 is the modal value of the distribution.

From previous experience with similar logs, he feels that £ would be 4¢kip-Tt)
with probability 0.4 or 5 (kip-{t} with probability 0.6, Not entirely satisfied
with these subjective probabilities, he decided to get a better measure of the
parameter A. Being pressed for time and with limited suppiy of logs, he can
only afford to test the bending capacity of two logs by simple load test on the
site. The test results yielded 4.5 Kip-ft and 5.2 kip-ft for the two tests,
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(a) Determine the posterior distribution {(discrete) for the parameter L

(b) Derive the distribution of the bending capacity of the logs M, based on
the posterior distribution of 4.

{c) What is the probability that M is less than 2 kip-f1?

§.6 The absolute error £ (in coy) of each measurement from a surveying instri-
ment is governed by the triangular distribution shown in Fig. P8.6, where o
denotes the upper limit of the error.

fE(E)h

2]
a

0 a

Figure P8.6

Two measurements were made and the errors arve 1 and 2 cm, respectively.
(a) Suppose that « is assumed (o be 2 or 3 ¢m with equal likelihood prior to
the two measurements; determine the updated distribution of .
Estimate the value of « based on this updated distribution.
(b) Now suppose (hat the prior density function of « is uniform between 2
and 3; determine and plot the updated distribution of «, and evaluale
the corresponding Bayesian estimate for o.
8.7 Suppose that the prior density function of the mean accident rate » in
Example 8.2 is
[ =2

= 0

05 <» <20
elsewhere

Determine the posterior density function of » based an the obscrvation that an
accident was recorded during the first month of operation.

8.8 1In Problem 8.1 suppose that the survivai probability has a prior density
function as follows,
(i) Uniform between p = 0 (o 0.9.
(i) Uniform between p = .9 to 1.0,
(iii) It is more likely that p will exceed 0.9 than be less than 0.9; the relative
fikelihood between these two possibilities is 7 1o 3.
{a) Determine the prior density function of p.
(b) If three structures were proof tested, and all three survived the maximum
proof load, determine and plot the posterior density function of p,
{c) What is the estimated value of p in light of the results in part (b)?

89 Theoccurrence of fire in a city may be modeled by a Poisson process. Suppose
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811

8.12

8.13
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the average occurrences of fires » is assumed to be 135 or 20 times a year; the
likelihood of 20 fires a year (on the average) is twice that of 15 fires a year
(a) Determine the probability that there will be 20 occurrences of fire in the
next year.
(b) If there are actually 20 fires in the next year, what will be the updateq
PMF of »?
(¢) What is the probability that there will be 20 occurrences of fire in the
year after next, in the light of part (b)?

Consider a case where the mean compression index of a soil stratum is to be
estimated. Assume that the compression index of & soil sample is N (#, o) and
¢ is assumed to be equal to 0,16, Laboratory tests on four speciments show the
following compression index values: 0,75, 0.89, 0.91, and 0.81.

(&) What is the posterior distribution of w if there is no other informatiop
except the observed data?

(b) Suppose there is prior information to indicate that s« is Gaussian with
mean 0.8 and COV 25%, What will be the posterior distribution of 4 if
this prior information is taken into account?

(c) What is the probability that x4 will be less than 0.95, using the data from
part {b)7 Ans. 0.938.

An air passenger is commuting between San Francisco and Los Angeles
regularly. Lately, he started recording the time of each flight. He computed
the average flight time from his five previous trips to be 65 minutes. Suppose
the flight time 7' is a Gaussian random variable with known standard devia-
tion of 10 minutes.
(a) Based purely on the data. what is the posterior distribution of eq.?
(b) The passenger is now on a plane from San Francisco to Los Angeles. By
coincidence, the passenger sitting next to him also has been keeping
track of the flight time. From his record of 10 previous trips, he obtained
an average of 60 minutes. Assume that these two passengers have never
taken a plane together before. With this additional information, what
would be the updated distribution of up?
(c) What is the probability that their flight will take more than 80 minutes?

Ans. 0.038.
Six measurements were made of an angle as follows:
32°04' 32°0s’
31959’ 31°57’
32°1" 32°00°

Assume that the measurement error is Gaussian with zero mean; and the
standard deviation of each measurement can be represented by the sample
standard deviation of the six measurements above.
(a) Estimate the angle.
(b) Subsequently, the engineer discovered that the angle has been measured
before, and recorded as 32°00" + 2'. Estimate the actual angle using
both sets of measurements.

A distance L is measured independently by three surveyors with three sets of
instruments. The respective measurements are 2.15, 2.20, 2.18 km. Suppose
the ratio of the standard error of the three measurements is 1:2:3. Estimate
the actual distance L on the basis of the three sets of measurementis, Assume
that measurement error is Gaussian with zero mean.
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8.14  In designing reinforced conerete structural members {o resist ultimate load, a

8.15

capacily reduction faclor ¢ is often used. Suppose that the structural member
is a beam element and it is designed for pure flexure. The conventional value
of ¢ is 0.9, However, a committee is investigating the effect on the probability
of failwe of beams against ultimate load if ¢ is increased to 0.95. Twelve
beams are designed using ¢ == 0.95, and each of them is subjected to the
designed wltimate load m the laboratory. It is desired to estimate p, the
probability of faiture of such beams against ultimate load based on the prior
Judgmental information as well as experimental cutcome.

Suppose that the prior distribution of p has a mean of (.1 and standard
deviation of 0.06; and one out of 12 beams tested failed the ultimate load.
Suggest a suitable prior distribution and determine the mean and variance of p
from these data.

The time between breakdowns of a certain type of construction equipment
follows an exponential distribution

[x(x) = Qe

where the mean rate of failure 4 was rated by the manufacturer to have a
mean of 0.5 per year and a COV of 20%,. A contractor owns two pieces of this
construction equipment. The operational (imes until breakdown of the
equipments were subsequently observed Lo be 12 and 18 months, respectively.
Using conjugate distributions, determine the updated mean and COV of the
parameter 2,

x>0



9. Elemenits of Quality
Assurance and Acceptance

Sampling

‘The assurance of product quality in manufacturing has long been a problem
of indusirial and production engineers. Quality assurance, however, is of
concern to all engineers. Compliance with minimum standards of construe-
tion and fabrication, and of quality in materials and workmanship, is
necessary to ensure the design performance eapability of an engineering
syster, For these purposes, acceptance criteria and aceeptance sampling
programs are necessary. For example, in the construction of highway
pavements, acceptance criteria are necessary o cnsure eompliance with
construction specifications; similarly, in stream pollution control, ingpec-
tion plans are necessary to enforee water quality standards.

Probability concepts and statistical technigues are pertinent and useful
to a variety of quality assurance problems. In this chapter we present and
develop those statistical concepts that form the bases of some commonly
used acceptance sampling programs. Such programs are of two types—
sampling by atlributes and scmpling by variables.

9.1. ACCEPTANCE SAMPLING BY ATTRIBUTES

When a lot of material of size N is submitted for inspeetion, a sample of n
items may he selected at random from the lot and subjected to inspection
and testing. In acceptance sampling by attributes, each of these n itoms is
classified as good (acceptable) or bad (defective) after the fest, It is a
common ceriterion that if more than » defective items are found from the
sample of n, the lot will be rejected. Conversely, the lot will be aceepted if
there are » or less defectives. If among the lot of size N, the actual fraction
of defectives is p, then the total number of defective items in the sample of
size n is deseribed by the hypergeomotric distribution (see Seetion 3.2.9),
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and the probability of accepting the lot is sccordingly given by

()6)
o) = DT 1)

o=} A
i

where ¢ = 1 — p. If » is small relative to N, it can be shown (Hald, 1952)
that ¢ (p) In I5q. 9.1 can be approsimated by

g(p) o= Z (T:) PR (9.2)

=0

which involves the binomial distribution. Bguation 9.2 can also be written

g(p) =1 — Z(

: ae=r-1

n :
) prghE (9.2a)
In this latter form, the term .1, w1 G)pFg can be found in tables of
binomial probabilities, for example, Bisenhart (1950) or Aiken (1855).

9.1.1. The operaiing characteristic (OC) curve

The funetion g (p) of Eq. 9.2 is referred to as the OC curve (operating
characleristie curve}. Tixamples of the OC curve are shown in Fig, 9.1 for
various sampling plans (with different combinations of » and »). 1t can bo
observed from each of the OC curves in Fig. 9.1 that as the fraction of
defeetive items increases, the probability that the lot will be accepted
deereases. For example, according to the sampling plan of Fig, 9.1, with
n = 15 and r = [, there is less than 5%, probability that a lot with 249
defective items will be accepted, whereas the probability of acceptance
inercases to 889 for a lot with 49 defective. From the appropriate OC
curve, therefore, we can read off the probabilities of accepting and rejecting
lots containing various percentages of defective items,

Generally, in determining the optimal inspection plan, it should be kept
in mind that the plan has to be accepted by both the supplier and recefver
of the lot.

s For the supplier, it is desirable that the plan have a low probability
of rejecting a lot in which the actual fraction of defective items p is
less than py, the maximum fraction of defective units permitted in
good quality lots.

¢ Yor the receiver, it is desirable that there be a low probability of
aceepting a lot if p exceeds py, the minimum fraction of deflective
units sufficient to define poor quality lots,
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Figure 9.1e  Operating-characteristic (OC) eurve n = 30.

The supplier’s risk of rejecting good-quality lots and the recciver’s risk of
aceepting inferior-gquality lots may be referred to as the producer’s risk
and the conswmer’s risk, respectively. The optimal inspection plan should
have values of n and » such that the corresponding OC curve will mutually
satisly these risk levels.

EXAMPLE 9.1

In the construction of an earth embankment, the fill material is compacted to a
specified CBR (California Bearing Ratio), Suppose that unsatisfactory performance
will result if more than 15794 of the fill falls below the specified CBR limit; however,
the best-quality compaction that can be expected at the contract price would contain
1% of the embankment falling below the specified CBR {imif, Assume a 5% risk
for both the producer and consumer; what values of »# and r should be used in the
quality control program?

Using the approximation of Eq, 9.2, the conditions to be satisfied are

P

£0.01) = Z ( ) (0.01)%(0.99) % == (.95

n
and

g0.15) = 3 (”) (0.15)°(0.85)"* = 0.05

== \X

The required values of # and r may be determined by trial and error from the solu-
lions to the two simultaneous equations given above. Alternatively, we can examine
the available OC curves {such as Fig. 9.1) and select the appropriate one. It may be
observed from Fig. 9.1¢ that # = 30 and » = 1 will suffice,
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EXAMPLE 9.2

The density of asphalt concrete in a roadway is to be inspected. Twenty specimens
(15-in. square each) were cored at random locations over a 5S-mile stretch of the
roadway. Laboratory tests show that only one of the specimens has a density below
the specified limit. Suppose that the maximum permissible fraction of defective
asphalt concrete is 15 %, and it is desired to limit the risk of accepting inferior quality
material to 4%, Should the asphalt concrete be rejected?

The acceptance function g(p) in Eq. 9.2 can be applied. In this case the criterion
for accepting the asphalt concrete is

g{0.15) £ 0.04
Forr =20 and r = 1, Eq. 9.2 gives

£{0.15) o= (2;?) (0.15)2(0.852" + (210) (0.15)1(0.85)12

= 0.0388 + 0.1374
= 01762 .

Since g(0.15) exceeds 0.04, the asphalt concrete should be rejected. In this case, for
the roadway to be acceptable, all the 20 cored specimens must have at least the
minimum specified density; because with r = 0,

FOU5) o= (2(?) {0.15)%(0.85)%

= 0.0388 < 0.04

EXAMPLE 9.3

Part of the probabilistic stream standard proposed by Loucks and Lynn (1966)
requires that the probability of dissolved oxygen (DO) in a stream falling below
4 mg/] in any one day should be less than 0.2. Suppose that the DO concentrations in
the stream between days are independent and identically distributed; how many days
of measurements are required to achieve a 9594 confidence that this standard is met,
that is, (DO < 4 mgfl) < 0.2, for each of the following cascs.

(i) The daily DO cannot be Jess than 4 mg/l during the period of measurement.

(ii) The daily DO is allowed 1o be less than 4 mgjl at most once during the
period of measurement,

Let p denote the probability that the daily DO is less than 4 mg/l. The problem
here is to determine # so that the probabifity of rejecting a stream quality with p
exceeding 0.2 is 0.95, or

£02) =1 —095 =0.05

Since the lot size here is conceivably unlimited, we may apply Eq. 9.2. For case (i},
r == {; hence
£(0.2) = (0.8)" = 0.05
obtaining
_1In (0.05)

s m = 13.4 =~ {4 days
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For case (i), » = 1; hence
£00.2) = (0.8)" + n(0.2}0.8)*1 = 0.05
By trial-and-error, we obtain the required period of measurement to be 22 days,
It may be observed, from the above resuits, that a two-stage sequential sampliyg

plan may be devised to achieve the same degree of confidence in meeting the required
stream quality standard, as follows.

Step 1

Take 14 days of measurements; if the daily DO concentration during all the 14
days exceeds 4 mgfl, the standard is met; il the DO concentration falls below
tl‘mg‘/% for two or more days, the standard is not met, whereas if the DO concentra-
tion is below 4 mg/l on only one day, go to the second step.

Step 2

Continue taking measurements for another eight days; if the DO concentration
r::xcceds 4 mg/lin each of the eight days, the standard is met; otherwise, the standard
is not met,

9.1.2. The suceess run
A type of quality contrel problem commonly encountered is as follows,

A “hatelh” of material or manufactured products is submitted for in-
spection. Suppose that a sample of n specimens are picked at random
from the batch and each one is tested for compliance with a standard
specification. Il acceptance of the bateh requives no failure out of the n
speeimens tested, what should the value of n he in order to ensure a
releability R for the manufactured products with a confidence level C7
This problem ean be selved by applying Fog. 9.2 with  equal to zero, A

batch with reliability 1 implies that the fraction defective is p = 1 — R;
hence the probability of accepting a bateh, whose reliability is R, is given
by

g{l — k) = R" (0.3)
Since a confidence level € is desired, the probability of acceptance should
be limited to 1 — ¢ Therefore,

R'=1-1( {9.4)

from which we oblain
In(1 — ) 0.5
In i ®:5)
It may be emphasized that this is the minimum number of specimens that
must be tested without any failures (that is, 4 suceess run of #), in order to

assure that the reliability of the product is £ with confidence €.
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EXAMPLE 9.4

In a prestressed concrele reactor containment structure, 900 tendons are used m
prestressing the concrete wall. After operating for a period of time, the level of
prestressing in these tendons may decrease. Suppose that to assure proper perfor-
mance of the structure, no more than 4% of the prestressing tendons can be allowed
to have less than the specified minimum prestressing force. Then, if a 959, con-
fidence is desired, how many tendons must be tested without failures ?

1 this case we have R = 0,96, and € = 0.95; thus Eq. 9.5 yields

HOE e o 74
in0.96
Hence, in order to assure proper structural performance with a 953 confidence,
74 tendons must be tested and all must have prestressing forces equat Lo or above
the specified minimum,

9.1.3. The average outgoing quality curve

Another commonly used quality eontrol sampling plan involves the AOQ
(average owtgotng quality) curve; this is a plot of the expected fraction of
defeetive units in the aceepted produet (alter inspection) as a function of
the assumed fraction of defeetive units in the as-submitted lot. In other
words, the AOQ curve indicates the degree of protection offered by the
ingpection program by providing information on the average quality of
the aceepted produet.

Consider an ingpection plan where each defeetive unit is replaced by an
accoptable one. 17 the lots submitted for ingpection consist of {100 p)9;
defective units, the average fraction of these lots that will he aceepted is
given by g (p) of Bq. 9.2, whereas the average fraction that will be rejected
s [1 — g{p)]. Morcover, among the aceepled lots, the fraction of defective
units is p, whereas the lots that were rejected will presumably be sereencd
and returned as perfect products and thus will contain no defeetive units,
Henee the average fraction of defeetive units in the final produet is given by

AOQ = pa(p) + 001 — g(p)]
= pygp) {(%.6)

The AQQ eurve corvesponding fo the OC curve of Fig, 9.1e (with n = 20,
r o= 1) is plotted in Fig. 9.2. It can be ohserved that when p s small, the
AQQ is also low as expeeted. However, the AQQ is also low for high values
of 7; this is heeause, in this case, the lots will have a high likelihood of being
rejected and the defective units replaced with good ones before resub-
mission. Therefore, at some moderate value of p (89, in the case of IMg.
0.2), the AOQ wili attain its maximum value; this value of AOQ is referred
to as the AOQL {average owlgoing gualidy Wmil), denoting the maximum
possible fraction of defeetive units in the resultant produet associated with
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Figure 9.2 Average outgoing quality (AOQ) curve

this quality control plan, Tn other words, using this acceptance inspection
procedure, we can ensure that the fraction of defeetives in the overall
guality of the product will be less than the AOQL,

EXAMPLE 9.5

In Example 9.1 where the quality of compacted fill is being inspected, suppose
that the sampling plan on a section of the embankment requires CBR test at 30 ran-
dom locations, and the section will be accepted if no more than one of these 30 tests
show substandard compaction. On the other hand, if there is more than one test
showing substandard compaction, the entire section will be recompacted (assume
that recompacting will correct any substandard quality in the original fill). What s

AQQ
n = 30
003 r=
002
(eTe]]
o i | | | |

(8] 004 C08 Qlz 0le azo Q24 028 p

Figure F9.5  AOQ curve for compacted fill of Example 9.5
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the resulting average quality of compacted fill as a function of the percentage of sub-
standard compaction in the original Al11?

Let p denote the percentage of substandard compacted fill. Apply Eq. 9.6 to the
OC curve of Fig. 9.4e for # = 30 and r = 1. The resulting AQQ curve is plotted in
Fig. £9.5. This curve gives the resulting average percentage of substandard com-
paction as a percentage of the substandard portion of the originat fill. According
to this sampling plan, the worst quality of compaction would have an average of
2.7% of substandard compaction in the final embankment. This will occur if the
original embankment contains approximately 5%, substandard compaction.

9.2, ACCEPTANCE SAMPLING BY VARIABLES

In sampling by attributes, as presented in Section 9.1, the quality of cach
item is classified simply as good or bad., With this procedure, one item could
have better quality than ancther even though both of them are “good.”
1t would scem that the actual measurements of the items tested should
have some bearing on the quality of a lot. For this reason, s sampling plan
that is based simply on & good-or-had classification for each item tested
would not fully utilize the information from the test results. An alternative
procedure is sampling by variebles, in which the values of the variable (a
quality indicator) for cach specimen in a lot are measured. By comparing
certain statistic (s) of the observed data, such as the sample mean, with
some standard value, the quality of the lot may be determined. Since the
measured data are more fully utilized here than in sampling by attributes,
the sample size required to achieve the same degree of guality eontrol can
he signifieantly smaller than that of sampling by attributes.

In sampling by variables, the distribution of the sample statistic is
required, and this depends on the distribution of the underlying random
variable. In practice, the Gaussian distribution is usually assumed. In
many cases, such as the degree of compaction and material density, the
variable appears to be Gaussian; in other cases, when the sample size is
large, the distribution of the sample statistic (such as the mean value) is
Ciaussian by virtue of the central limit theorem. The foliowing are some of
the eriterla used in acceptance sampling by variables.

9.2.1. Average quality criterion, ¢ known

In many quality control programs, such ag inspeetion of compaction level,
moisture content, and bulk density of eonstruction materials, the as-
surance of quality may be based on the average quality of the lot, Buppose
that a mean~value g, for a lot constitutes good or acceptable quality {from
the producer’s standpoint), whereas a mean value of g, for the lot corre-
sponds o bad or unaceeptable quality (from the consumer’s position), A
common acceptance plan would be to minimize the probability that a good
lot (that is, with w.) will be rejected, and also minimize the probability that
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Figure 9.3 Distribution of sample mean and corresponding visk measures

a bad lot (with u.} will be aceepted. Let o and g denote the producer’s and
consumer’s risks, respectively; then the required sample size n and the
standard mean-value L can he determined to sadist ¥ these risks, ‘
' Consider first the case in which the standard deviation o of the variable
Is known in advance (perhaps from experience) and the varlable is
Gaussian. Ifor a sample of size «, the sample mean will he Gaussian with
standard deviation ¢/~/n. Then if a lot is of aceeptable guality (its mean
value is uq}, the sample mean will have a distribution N (4, o/ /7). Now
suppose that the lot will be rejected if the sample mean % is less than 7
then to limit the producer’s risk to «, we should have }

- . L' = M
P(X < L] pa =<I>(ﬁm—7_“ = ]
| ha) T @ {9.7)
Similarly, if the lot is of poor quality (that is, with mean-value g}, the
sample mean will be N (g, o/ v/n) ; then to satisfy the consumer’s riglk, we
should require

. = IJ — M
I’(X>I,p)x1_<13(w_%)= {
‘ o/ /N A (08)
Fquations 9.7 and 9.8 are portrayed graphically in Fig. 9.3; solution of
these two equations then yield L and » for given values of g, o, and g.
EXAMPLE 9.6
The density of a newly completed airport pavement is to be inspected by coring

bloclf specimens from the pavement. Suppose that from past experience, the
density of such pavements has a standard deviation of 3%, The mean densities

9.2, ACCEPTANCE SAMPLING BY VARIABLES 371

of good and poor quality lots are 96 %, and 925, respectively, Determine the sampling
slan if both consumer’s and producer’s risks are taken at 5%,
With the following substitutions:

g = 096, o, = 092, o = 0.05, § = 005, 0 = 0.03

Eqgs. 9.7 and 9.8 become, respectively,

® (____m‘r“ —. 0‘96) = 0.05

0.03/Vn
and
1 @ é_t_?_g___z_ - 0.05
0.03/vn
or
.03 —0.049
L - 0,96 = e (]_rl(o‘os o ul
Vi ) Vi
and
L —092 =29 g5y = 200
v Vi

From which we obtain L = 0.94 and » ~ 6. Therefore the sampling plan here
requires that six core specimens should be fested and the average density of the
six specimens should be at least 94 %, to ensure the density of the pavement.

EXAMPLE 9.7 (Excerpted from Grandage, 1966)

Cement is supplied in bags to a contractor, He is willing to accept cement with
0.3 % moisture {considered to be excessively moist for construction purposes) only
102 of the time. However, the cement supplier demands that cement with 0,13
moisture {consitered to be excellent quality cement) should have a low probability
of rejection, no more than, for example, 3%,

Assuming that these moisture contents are average values, we have

o = 0.134; M, =039

@ =005; f=01

and

Assume further that ¢ = 0.1%.
In this case, a good cement would be rejected if its mean moisture from a sample
exceeds the specified standard L; therefore we require

o 1, — 0.001
PX>Lip)=1-= <I>(m»0_m) = 0.05

whereas a poor cement would be accepted if its sample mean moisture is less than
L; hence we also require

. 0.003
PE <L) = q_a(m ) — 01

0.001/ vV
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After simplification, we obtain

and N
V(L - 0.003)
0.001
The nearest integer value of n that satisfies these equations is 3, and the correspond.

ing value of L is 0.21%,. Therefore, il the mean moisture of three bags of cement
exceeds 0.21 %, the fot should be rejected; otherwise, the fot should be accepted,

9.2.2. Average quality criterion, ¢ nunknown

Quite often ¢ is not known in advance but has to be estimated from the
measured data; in such cases the sample mean will no longer he Gaussian,
Instead, the Student’s -distribution will apply (see Sectlon 5.2.2), Then,
in place of Hgs. 9.7 and 9.8, the two simultancous equations needed to
determine the required sample size » and specified standard L are

Vo~ pe)

"'tn,ﬂ—l (99)

8

Vol = )

8

and
(gt (9.10)

WHOTC £y ey and fg e are the 100{1 — &) and 100{L — B) percentile values
of the t-distribution with {n — 1) degrees of freedom; and ¢ is the sample
standard deviation. Here {y .1 and g,.a depend on n; henee the solutions
for L and » from Eogs, 9.9 and %10 would require trial-and-error procedure,
EXAMPLE 9.8

In Example 9.7, if the standard deviation of the moisture content o is unknown,
the sample standard deviation s must be used. Suppose that the sample data yiekled
s = 0.19%; then the constraint equations become

V(L - 0.01)
ool feusael
Va(L — 0.003)
—ooor T Tlerm-r
After a trial-and-error procedure, the required sample size # is found to be 4 and the
corresponding value of L becomes 0.22 2.
9.2.3. TFraction defeetive eriterion

Sometimes the consumer is not so much concerned with the mean quality
and variability of a lot, but rather with the fraction of the lot that is
defoctive.
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In a sampling plan io control the fraction defective in a lot, a sample of
gize n i selected at random and measured. The fraction defective p may
then be estimated from the sample mean and standard deviation. The
eriterion is that if the estimated {raction $ is greater than a maximum
allowable fraction M, the lot will be rejected.

Consider the case in which the required minimum value of a variable X is
ap; then the fraction defective is simply the probability P (X < ). Buppose
that the distribution of X is normal with standard deviation o; then § may
be estimated as

i

p=PX < w)

Ty — X
¢C”) (9.11)
a
where X is the sample mean,

Again, we define p. and. p,, respectively, as the acceptable and un-
aceeptable fractions of defectives in a lot. If the fraction defective in a lot is
Pa, the probability that an item will be defective is

PX <) = pe

Ty — @
@CLj)=%
o

That is, the mean value of X for a ot with p, fraction defective is given by

i

or

Ba = Ty — o®1{p,)

The event that this acceptable Lot will be rejected is the same as 9 exceeding
M. From Iiq. 9.11, this probability is

[ (=55

= P[X < ay— ¢ (M)]

The sample mean X is Gaussian N (s, o/ v/'n) or N[ — @7 (5.}, 0/ 4/ n];
hence, limiting the risk of rejecting a good lot to «, we have

xwwwmm~m+ﬂwmq
/1
B[V T (pa) ~ MY = a

P{p > M)

P@>M)=¢[

i

Trom which
V(@ (p) — $HMY = & (@) (9.12)

Similarly, if the fraction defective in g lot is p,, limiting the risk of
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accepting a had lot to 8, we obtain

V[P (p) — &MY} = b1 - ) (8.13)

Solution of Togs, 9,12 and 9.13 yvields

L )
o= { D {p,) — 7 {p,) (9.14)
and
i A I (o)
M o= D P‘“’ (pay — \/(f—)—} (9.15)

Therefore, in a sampling plan to control the fraction defective, the sample
size n and tolerable fraction defective M are given by gs. 9,14 and 9,15,

If o 18 unknown, acceptance sampling plans would be more difficult 1o
derive. In such cases, the required sampling plans may be developed using
standard tables, such as those provided in MIL-8TD-414 (1957).
EXAMPLE 9.9

One of the principal items under control for a farge earth dam embankment
project is D, the ratio of fill dry density to laboratory standard maximum dry
density. Suppose material of good-qualily compaction requires that D exceeds
0.99; otherwise, the fill will be rated as poorly compacted. The engineer estimales
that for satisfactory performance of the embankment, the maximum tolerable
fraction of poorly compacted fill should not exceed 8%, whereas a 3% poorly
compacted fill is acceptable. Assume that the producer’s and consumer’s risks are
both 5%, Devise a sampling plan assuming that 2 has a Gaussian distribution,

With

o = 0,05 f o= 0.05

and
P = 0,03 poo=0.08
-we oblain the required sample size it from Eq. 9.14 as

. [qr-"l(o.%) — CD'*(O.()S)T

PT(0.08) — d1(0.03)
B { 1.64 — (~1.64) "2
- (—1.40}——(—1.88)J
= 47

The corresponding tolerable fraction defective M i obtained from Eq. 9.15 as

. .
M == O [r{s 03) __)__(_{)_(En):l
h%

‘47
- q,[(_f,gg) _ ﬂ}
V4T
= B{—1.64)
= (.05
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Suppose Lhat ihe sample mean of D from 47 specimens is computed to be 1.005;
would this section of embankment be acceptable? Assume that the standard devia-
sion of 22, namely o, i5 0.01.

With the mean value of D estimated to be 1.003, the probability that a fill specimen
will be of poor quality is given by

P(D < 099) =@ (92?6:0'11"(@)
= O(~L1.5)
= (0,036

Hence the estimated fraction defective j is 0.036 based on the observed data. Since
this is fess than 0.05, this section of the embankment is acceptable.

EXAMPLE 9.10

In Exampie 9.3 it is specified that the probability p of the daily DO concentration
in the stream Talling below 4 mgfl is 0.2 with a 957 confidence, In other words,
if p == 0.2, the probability that the stream quality will be unacceptable is 95 Vs
or the risk of accepting poor-quality stream is 5. Hence f§ = 0.05 and p; = 0.2.
Since only consumer’s risk is inveived in this case, Eq. 9.14 may be used (assuming
the daity DO is Gaussian) to determine the required period of measurement (in
days), Suppose that the daily DO is allowed o fall below 4 mgfl at most once
during the measurement period; then the stream quality will not meet the standard
if p, estimated from # observed measurements according to Eq. 9.11, exceeds 1/n.
Thus M = Lfnin this case, Equation 9.14 then yields

v ©7095)
T2 e

_ 1.64
T 084 — @10

By trial and error, the solution fo the foregoing equation gives »# = 11. Therefore
a period of 11 days of measurement is required; if the measured daily DO does not
fall below 4 mg/l more than once during this period, the stream guality satisfies
the DO standard with 95 %, confidence.

This result may be compared with the period of 22 days based on sampling by
attributes in Example 9.3, Assuming that DO bas a normal distribution, the
sampling by variables therefore reduces the required period of observations to hall
that of sampling by attributes.

9.8, MULTIPLE-STAGE SAMPLING

11 addition to the single-stage sampling plan discussed above, muliiple-
stage sampling is sometimes used in inspection progranms. An example of this
has been discussed in Bxample 9.3, The objeetive is fo aceept the un-
questionahly high-quality products and fo reject the unguestionably low-
quality produets based on relatively small samples taken at the first stage.
The lots with questionable quality are subjected to a sceond-stage sampling,
Based on the combined samples from the two stages, these lots will be
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accepted or rejected, or he subjected to a third-stage sampling. Pl
proecess may he continued to several sampling stages, The risks (;)mduc{sr’;
and consumer’s) involved in the multiple-stage sampling can hoe mmi;,
equivalent to that in the single-stage sampling, provided the OC curves m-(;
the same in cach sampling plan through appropriate choice of sample g y,p\;
and acceptance-rejection eriteria. The reader is referred to Lipson auﬁ
Sheth (1973) and Hald (1952) for a further treatment of this subject,

9.4. CONCLUDING REMARKS

In this concluding chapter, we have introduced the elementary conceptg
pertinent to the development of programs for quality assurance and ac-
ceptance sampling, Acceptance sampling programs or plans are of {we
general types—sampling by aitribules and sampling by variubles. In all Cases,
an important consideration in the development, of a program is the resoly.
ion of the conflicting interests of the produeer and consumer.

The application of the concepts introduced here is facilitated greatly hy
the availahility of pertinent tables and charts, such as the tables of binnmiz;{
probabilities  (Kisenhart, 1950; Aiken, 1955). Morcover, tables corre.
sponding {o standard sampling plans have been developed for hoth ac-
ceptance sampling by atiributes and sampling by variables. Tor example,
the military standard MIT-STD-414 (1957) and MIL-STD-105D {1963)
provide charts giving the required sample size and the aceeptance-rejection
criteria for hoth single and multiple sampiing plass once the lot size, the
tightness of the inspection level (as defined by the level of producer’s and
consumer’s risks), and the tolepable fraction of defeetives have beon
specified.

PROBLEMS

8.1 (a) A large set of welds is submitted for inspection. One out of 20 welds
inspected was found to contain flaws. Suppose that the workmanship would
be unacceptable if mere than 109 of the welds contain flaws. Should the
welds be accepted if the risk of accepting welds with unsatisfactory
workmanship is limited to 59,7

{b) Suppose further that good workmanship is defined as no more than 3%
of the welds contain flaws. 1f the risk of rejecting welds with good work-
manship is limited to 109, devise a sampling plan that will satisfy the
producer’s and consumer’s risk requirements. Use any pertinent data of
part (a) as necessary,

(c) Consider a sampling plan that requires inspection of 25 welds and at
least 24 welds must be flawless for acceptance. Those welds that are
rejected are required Lo be repaired. Determine the AQQ curve and AQQL
corresponding to this sampling plan,

9.2 Sulpbur diexide is a main source of air pollution in a major city. Suppose that
a concentration of 5O, less that 0.1 unit (for example, parts per million parts

9.3

9.4

9.5

9.6

9.7
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of air) is harmless to human beings, If it is desired to maintain this condition
for at least 90% of the time, what minimum number of daily measurements
of SO, concentration is required to assure the desired air quality with 9594
confidence? Assume that S0, conceniration between days are statisticaily
independent. Ans. 29.

(a) Soft lenses of sand deposits are hazardous to foundation safety during
carthquakes. Soil borings is one way of detecting the presence of such
lenses. Record of ten borings made at random locations over a large
building site shows no signs of soft lenses of sand deposit. What is the
confidence (probability) that sand fenses would not be found in more than
159 of the area beneath the site? Ans, (.803.

{b) Suppose that the engineer would like to have a 999 confidence that sand
lenses would occupy less than 159 of the site area. How many additional
borings should be made? Ans. /9.

Individual diesel engines used for generating emergency electrical power must

have a high reliability of starting during an emergency. If a reliability (10 start)

of 99% is required, how many consecutive successful starts would be necessary

10 ensure this refiability with a 959 confidence?

Ready-mix concrete is supplied to a building site for copstruction. In order

to ensure that the concrete meets the specified strength requirement, specimens

of the ready-mix concrele are subjected to compression les(s. Suppose that a

batch containing 5% or less under-strength concrete is regarded as good-

quality, whereas that containing 207%, or more understrength concrete is
deemed unsatisfactory. Devise a sampling plan for assuring quality concrete,
if the producer’s and consumer’s risks are 10% and 6%, respectively. Ans.

n =230 r=23

Structural-grade lumber is used for faisework in a construction project.
Lumber of a given dimension is shipped in truck loads. Suppose that five
pieces per truck foad are selected at random and subjected to examination and
test for quality assurance. Acceptance of a load requires all five pieces 1o be
nondefective.

{a) If the allowable [raction defective can be as high as 303, what is the
consumer’s risk?

(b) The supplier here is not expected to deliver structural grade wood with
fess than 10% defective. If the fraction defective in a truck load of
structural grade Jumber is actually 10%, what is the probability that a
truck load will be rejected?

In an earthdam construction project, the density of the compacted fill is
measured at random locations to insure the specified degree of compaction.
Suppose that the acceptance criterion requires that the average dry density
from 10 locations should be at least 118 Ib/fi3. Assume that 120 and 114 1b/t?
correspond, respectively, to the mean densities of good and poor-quality
compaction, Assume also that the densily at various locations varies and may
be assumed to be Gaussian, with a standard deviation o of 4 1bfft,

(a) What are the consumes’s and producer’s risks associated with this
sampling plan?

{b) If the consumer’s and producer’s risks are specified at 5% and 0%,
respectively, devise the appropriate sampling plan.

(¢) Repeat part (b), assuming that ¢ is unknown, but expected (o be around
4 1h/it?,
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The thickness of a finished pavement relative to the specified thickness g ,
measure of the quality of construction. Suppose that a thickness of 8 i\n or
more s considered adequate; otherwise the pavement will be rated as p()(.)r(i) l
constructed. The engineer estimates that for satisfactory performance of sy,
en.m'e pavement, no more than 10% of the pavement can be less than 8 ix:
thick, whereas up to 2% of the pavement with less than 8-in, thickness jg
considered acceptable. Assume that the producer’s and consumer’s risks '11'“’
both 10%]. Devise a sampling plan assuming that the thickness of pavem:: :
has a Gaussian distribution. Ans. o = 1, M = 0.047. "

The acceptance of a newly designed solid waste treatment plant will be baged
on its performance under various types of waste load input, The qualily\ of
performanlcc is measured by its efliciency in converting the solid waste 15
?o:]vp‘oilutmg materials. Suppose that a plant with a mean efficiency of at leasy
90%; is considered “acceptable,” whereas one with a mean efficiency of lesg
than 80737 is considered inferior. Assume that the risks of accepting an inferior
quality plant and of rejecting a good-quality plant are both 59, Devise an
acceptance sampling plan, whereby the efficiency in cach trial operation ig
mea:ﬂ;ured, that will Tulfill the above requirements. Assume further that Ihé
e?izz&wy of each freatment operation is Gaussian with a standard deviation
of 497,

Appendix A
Probability Tables

Table A 1. Table of Standard Normal Probability

Table A.2.  p-Pereentile Values of the £Distribution
Table A3, a-Percentile Values of the x? Distribution

Table A4, Critical Values of D= In the Kolmogorov-Smirnov Test
o
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0.12 (347754 .62 0. 1 0868643 1.62 (), 047384 2,12 0. 882007 2,62 0095604
0.1 ABITET 0,133 (1. 733033 BE] .63 0048149 2,13 HRTRARE 263 0.00575
ARE 05535671 .64 0LTN01 i 1.4 00449407 21 1), DR384 2.1 000585
HRE (4 330018 0,65 0712153 b 0UBT4028 145 0. 050520 2,15 (3.054223 2,85 D.965075
0.4 0, 363560 .6t 0740874 LM OURTNGTR 146 PR ARITHES 286 00686093
(.7 0. 5074 0.5y 1, 78572 [ PRI vt 007} 167 R 0. 584007 267 0.086207
018 0571423 (I 731748 AR 0.S81000 1.68 218 1. 085374 268 0.006334
U1 0.ATA3HS EY] 0.7 H4003 10 GL8S07T SN 1 931486 219 (1985738 960 99647
(et (379260 6,70 0. 7558086 1200 {hNSH030 1.70 0. 053435 0. 8486007 2700 0806533
0.2 SIS 0.7l 0761148 P20 0L HRGEGO 1.7 003367 0880447 2.7 0L D36
- 0.7 0.764238 127 0 888767 .72 {1,057284 0. 086791 272 099873
.73 U L2 0URI083) IR 0.958185 0.087126 9,78 0006833
0. 5801835 (.74 AATIENTE M0 8012 1.74 0. 959071 (3.087435 274 D909
1) 5498700 0,75 0.773373 1.2 (884330 1.7 . 830841 2,25 0087776 2,75 0.097020
(LGRS 0.7 0770873 126 0.805165 PTG 0, D67 06 2,20 0. DBR0SHS 270 L8070
(G20 077 1, 77350 VUT o 0.807958 1.77 0, 96635 27 (), 988306 2TT O LBeTI0T
(1. 10262 074 1, 782305 R O 1 e g 1.78 0, 962462 228 00, D8RG 278 0.007282
16140902 0.7 0. 785230 .29 080175 1.79 0,963273 2.20 (), 98598 279 D.007365
0.617012 0.80 0.788145 10 0504190 1.80 0064070 2,530 0480278 280 0907445
0.8 0. 79130 IR : A T 1.81 D.064852 2.1 01, 088530 2,81 0997523
0,52 0. 73802 boi 0806383 1.82 0565021 2082 (1. 083830 2082 0907508
.51 VITHPRT 133 0008201 184 0.968375 2.8 0.090087 283 D.BUTHTE
[HIRS! 0. 799510 1340 0900877 1.84 0.987118 2034 0990358 2,81 0087744
0. 63683 0.8 0. 8023337 135 0019 1.8 (3.067643 255 0080613 2,85 D.OOTEH
(.36 0.B1U576 .86 0.805105 16 0O9ENS 1.86 (3068557 2.6 0. GO0B3 2,86 0907882
.37 DRS00 0,87 0. 807850 L7 0015850 187 060238 28T 01081106 2T 000738
0.8 0.G48027 0.84 0.R10570 1S 0.016207 1,88 IRV 2,88 000134 2,88 0908012
.39 0631742 0.8 081267 139 0017783 1,89 0, 470621 2.39 3001576 280 0808074
0.an 0655422 0.40 0.515840 1,40 0010084 1.00 0071284 2.40 0. D180 2,90 0. 098134
0.1 0830007 .41 0. 818580 141 10205730 1.91 0.97 1433 2.4 R R 2,01 0.0981493
0.2 L GE2TAT .42 o2 0022106 .92 0.472571 2.4 0. O0EMD 202 0008250
043 0 G402 0.0 P3O g 1,93 0.87397 243 0002451 T 0.008305
044 0, 670 .04 i 0L usaiGg 104 (073810 24 (1. 902050 1O 0008
.45 0. 73645 045 (1, S84 IR E IR Y 1,05 08974412 2. 0.992857 205 0.80841)
(06 NLHTT22 (3.3 0831473 1 (1, 997835 1,08 0,97 5002 2. 10, 953053 2,85 0088462
Uy . B8082 007 0833977 LT ey 307 11, 975581 2 0003244 207 0.988311
.48 (1. GS438T [ER 0. 836457 18 0530563 .08 0976148 2. 0993431 208 0908350
0,44 1. 68T 0.u0 DRSS ES 1,44 0.3 1884 1.99 0076705 2. 0.09:3613 2,08 (1. 908605
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Table A.1.  (Cont’d)
Table A.2. p-Percentile Values of the -Distribution® (After Brownlee, 1960)
* & {x) x & (1) , -
’ L %@ P 0.750  0.900  0.950 0,975 0.990  0.995 0.999
0l o oomm 3300000707 40 091671210, /
301 -0 5.1 0. 906771 405 0.256088F.04
oy R o B2 0.0mes 110 0200575804 1 1.000  3.078  6.314 12,706 31.821 63.657 318
304 0.998817 351 0999800 PV ety 2 0.816  1.886  2.920  4.303  6.965  9.925  22.3
.05 0.998850 555 . DO 3 0.765  1.638  2.353  3.182  4.541  5.841  10.2
AR .DO8850 .35 0. 999807 4.23 0, 106885F, led B 9 13° < g : j :
304 0, 998893 3.5 0.909815 4.30 ()'8330031‘:-0‘} 4 0.741 1,533  2.132 2,776 3.747  4.604 7.173
T 0m 55T 0 090821 135 0 S00sSE 5 0.727  1.476  2.015  2.571  3.365  4.032  5.803
3. 0. 508965 358 0.999%28 140054125410 0
3.00 (3, 998059 3,59 0, 999835 4.45 04):!1}‘;2:?;8; 6 0.718 1.440 1,943 2.447 3.143 3.707 5,208
. - . e 7 2N 05 9 265 9 : a5
:;. 10 ()_gggn,?:; :;_1‘;() 0000843 550 b.areTGs 7 0 .i] J; } 4] 5 1 .8‘?0 CZ.:%().? :2.9955 '34(30 4, i&)
3. l‘l> 0.59945 3.6 0.409847 455 0208250803 8 0,706 1.397 1.860 2.306 2,896 3.555 4.501
: ;; :;;’33(1'3:: : :li :; ) gggg;; .60 0.21E43E05 3 4] 0.703 1.383 1.833 2,262 2,821 3,250 4.297
: S92 BN LO00R5 .65 0.”.{9[.31}{: 37¢ ¢ < ¢ 9 HEA : 3 .
51 099905 SO s T o lsawer : 10 0700 1.372 1.812 2,228 2764 3.160  4.144
o i e ool me U oo 2o a0m G
B e A0t ARG8T 4.80 DR 2 G845 1.356 7 2,174 LG8 3.085 3.0
S o, B 0.0 450G, 130 0.694 1350 1771 2,160 2,650 3.012  3.852
R 3. ,O008%; ¢ - ST ) — . o e . .
309 0499280 AG0 0 ososss I el 14 0.692  1.345  1.761 2,145 2.624 2,977 3.787
320 o - i . o 15 0.691  1.341  1.753 2.131  2.602 2,947  3.733
i o 3.0 0. 999802 54K 0266321506
L9 0 iy A 3.1 16 0.600 1,337 1.746 2,120 2.58 2,921 3.686
Y 1T 099903 R ; 17 0.680 1,833 1740 2,110 2.567  2.808 3.4
3.2 1.490402 3.7 .999908 A0 0333204507 : 18 0.688 1.330 1.734 2.101 2.552 2. 878 3.610
1 0 515 0.0 S0 0 I8ORIGEL: ‘ 19 0688 1.328 1.7 2.083  2.589  2.861 3.579
:s'-:l') (!.;l;l‘.lg:i 3,70 000815 GG L TEEET 20 0.687 1.325 1.725 2.086 2.528 2.845 3.552
.:;'3;4 :)’q’(:{::gf 877 0,999918 BUT0 OLA0803TE-08 o o e . . o = o o o e
328 9 3.7 (. a0y B0 033157508 21 0. 686 1.323 1,721 2.080 2.518 2.831 3.527
3. 0. 00044 3.7 0,000 .00 0LIBLTAIE-R - 22 0.686 1.321 1.717 2.074 2.508 2.819 3.505
330 3.80 0. 090028 600 0985388500 : 23 0.685 1.319 1.714 2.069 2.500 2.807 3.485
gl 381 0999931 6.0 0.5303435-00 24 0.685  1.318  1.711 2.064 2,492 2.797 3.467
b B2 0003 620 0.28231 509 25 0.6%4  1.316  1.708  2.060  2.485 2787 3,450
Bz 0 000566 383 0,90003 G0 L8809 ' v v o ' i e ' Y
34 0.000581 3,84 0, 93N .40 077688 E-10 : 920 : 215 ! 9 053 9 47 9 77 2435
4 an - o ‘ g _ 26 G.684 1.315 1.706 2.066 2.479 2.779 3.435
g o ::: ::“:;:?:Hi G530 G060 110 27 3.084 1,314 1.703 2,052 2473 2971 3.421
P - Ve o emmon B0 20338 Lo . 28 0.685  1.313  1.701 2.048  2.467  2.763 3.408
[T Ly ) s Yot . ! s < els . ] € 4 4 iy V =i [ d
:i-:gf‘} (3.”!]'.“:)._5.' 488 R TRTS 5.80 0.5231 -1 219 (}. 683 1.311 1.609 2.045 2.462 2.7506 3 59()
3.0 0, 998650 BT 0. 080030 GO0 0260 L8 30 (}.683 1.310 1.697 2.042 2.457 2.750 3,385
3.40 0008563 3.0 - . . : - o .
Sal oo Y e P 2e Ly 40 0.681  1.303  1.684 2,021 2,423 2.704  3.307
B2 0 .92 0 egnss Ca s 60 0.679  1.296  L.671 2,000 2.300  2.660 3,232
:;; :;:::;::'-):.8, :'i,!l:i (1, 590058 T O -2 120 0.677 1.289 1.658 1.980 2,358 2.617 3.160
. R 3.4 0. 065050 T DGR B * 0.674 1.282 1.645 1. 960 2.326 2,576 3.090
:5.4.3 0.99%9720 345 . OB906 IR 1) B < B DM B :
346 0. 89971 306 0.9090(4 TAD 0 Eas . T . . — T .
347 099740 5o P L o I | * Abridged from Table 12 of Biometrika Talles for Statisticiens, vol. 1, edited by
3.48 0. 080749 :i:‘:?& ()..‘..l“‘);}‘:n;i ié([: ::;:; ;:: B, 8, Pearson and H. O, Hartley, Cambridge University Press, Cambridge (19543, and
3.44 1. 999758 3.9 0, 599407 ;‘:!JIJ 01n ,_::}:' Table T of Stafistical Tables for Biological, Agricwltural, and Medical Research, . A.
i Fisher and ¥, Yates, Oliver & Boyd, Fdinburgh, 1953,
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Table A.3. L.a.-Percentile Values of the ¥ Distribution® {(After Brownlee, 1960)

T—
Xua 0.005 0.025 0.050  0.800 ©.950 (.975% 0.990 0.995 . 99q
f

i 4 roveSmirnoy Test (After
Table A.4. Critical Values of D in the Kolmogorev-Smirnoy Test (Af

Hoel, 1962)

P 0.04393 0.03982 0.02393 2.71 3.8 5.02 6.63 7.88 0.5 0.90 0.10 0.05 0,01
2 0.0100 - 0.0606  0.103 4.6l 599 7.38 920 10.6 13 “ -
3 0.0717  0.216  0.352  6.25 7.81 9.35 11.3 12.8 16.3 "
4 0.207  0.484 0711 7.78  9.490 11.1  13.3  14.9 185 . .45 0,51 0,56 0.67
5 0.412  0.831  1.15 §.24 11,1 12,8 151 16.7 .5 To 039 0.37 0.41 0.49
6 0.676  1.24 L.64 - 10.6 12,6 144 168 185 995 | 15 0.27 0.50 u.fi g-gg
7 0.980 1.69 2.17 12,0 14.1 16.0 185 20.3 A3 20 0.23 0.26 0.2 .
1.34 2.18 2.73 134 155 17.5  20.1  22.0 2%.] 25 0.21 0.24 0.27 0.2
9 1.73 2.70 3.33 0 147 16.9  19.0 217 23.4 27.9 30 0.19 0.22 @-j? ) o7
10216 3.25 3.9 16,0 18.3 20.5 23.2 252 99 | 35 0.18 8-?8 8';? 0 o
J12.60 3.82 457 17.3 0 197 209 247 2.8 313 jg 3:12 ) 0.18 0.20 .24
12.3.07  4.40 5.23 185 20.0 23.3 26.2 28.3 324 50 0.15 0.17 0.19 0.23
13 3.57 5.01 5.80 198 224 247 277 298 34.5 ) . s o
4407 563 6.57 20 237 2.0 291 313 361 0 S0 1.07/+/7 122/ 1.367+/n 163/
15 4.60 6.26 7.26 223 250 27.5  30.8  32.8 3w
16 5.14 6.91 7.96 235 26.3 28.8 32.0 34.3 39.8
17 5.70 7.56 8.67 248 276 30.2 33.4 35.7 40.8
18 6.26 8.23 9.39  26.0 28,9 31.5 84.8 37.2 42.3
19 6.84 891  10.1 27.2 30,1 329 36.2  38.6 43.8
20 7.43 9.50  10.9 28,4 31.4 342 37.6  40.0 45.3
21 8.03  10.3 11.6 29.6 32.7 355 38.9 41.4 46.8
22 8.64 11,0 2.3 30.8  33.9 36.8 40.3 42.8 48.3
23 9.26 117 13.1 32.0 35.2 38.1 41.6 44.2 49.7
24 9.80 124 13.8 33.2 364 39.4 43.0 45.6 51.2
25 10.5 13.1 14.6 3.4 37.7 406 44.3 46.9 52.6
26 11,2 13.8 15.4 35.6 38.9 41.9 45.6 48.3 54.1
27 11.8 14.6 16.2 36.7 401 43.2 47.0 49.6 55.5
28 12.5 15.3 16.9 37.9 413 445 48.3  5L.0 56.9
29 13.1 16.0 17.7 39.1 42,6 457 49.6  52.3 58.3
30 13.8 16.8 18.5 40.3  43.8 47.0  50.9  53.7 59.7
35 17.2 20.6 22.5 46,1  49.8 53.2 57.3  60.3 66.6
40 20.7 24.4 26.5 51.8  55.8  50.3  63.7  66.8 73.4
45 240 28.4 30.6 57.5  61.7 654  70.0 73.2 80.1
50 280 32.4 34.8 63.2  67.5 714 76.2 79.5 86.7
75 47.2 52.9 56.1 91.1  96.2 100.8 106.4 110.3  118.6
100 67.3 74.2 7.9 1185 124.3 129.6 135.8 140.2  149.4
* Abridged from Table V of Statistical Tables and Formidas by AL Hald, John Wiley &
Song, New York, New York (1952,
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Appendix B

Combinatorial Formulas

In ‘pl_'ol'}ai_)ility problems involving diserete and finite sample spaces, {}

d'ef‘;mtion of evenis and the underlying sample space ;zt'ntails !':.111(‘}(('11{1':1 }“
tion (?f sets or subsets of sample p()ints; TFor this purpose, the t’,(*(:hz;i{ u >( 7‘1 o
combinatoriol analysis are often useful. We summarize <],10re.) thlrf b 1 fih o
ments of combinatorial analysis. h i dle-

B.lI THE BASIC RELATION

If there are k positions in a s istingui

1 ther > are k 33.0.‘?&,10115 i & sequence, and ny distinguishable clements
AN occupy position 1, ng ean oceupy position 2, ... and n can oceupy
position &, the number of distinet sequences of & clemoents each is given l:)‘y

NUi‘ i Ny, Ney ..y, ’n_,;) == y7ig e« Ty (B})

Examples

(&}1'H; a design involves three parameters ¢y, ¢u, g3 and there are

respectively, 2, 3, 4 values of thes : fFonsible

; 3, alues of these parameters, the n Feas

: : . ameters, the number of feasible

e \ of feasible

NB[2,3,4) = (23)@) =24

i (b) In a three-dimensional Cartesian coordinate system 2, v, 2, if 10
arrnt (% =S AT EY -] l. 3 3, Y ' l 7 '
iscrete values are specified for cach of the axes, for example, 2 = 0, 1

¢ ot i S
2,...,9, then the total number of coordinate positions is 7

N(3]10,10,10) = (10)% = 1000

B.2 ORDERED SEQUENCES

In a set of n distinet ele s, 1
a set of n (Ilbi:ll}(,t elements, the number of k-clement ordered sequences
Or arrangements, 15 ,

= nlm — 1) i — , ol i
e =nm— 1)~ n—Fk-41) = o it_i?fi (B.2)
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for the first position in the sequence of k clements, there are o elements
available to oceupy it; but there are only (n - 1) elements available for
the second position sinee one of the » has been used for the first position,
and only (n — 2) clements available for the third position, and so on.
Thence, by virtue of the basie relation, lig. 3.1,

() = N@e|n,n—1,...,n—Fk+1)

thus obtaining fq. B.2.

Examples

(a) 1f no digits are repeated, the numher of four-digit figures is (10), =
(10} (9) (8) (7) = 5040, whereas, if the digits can be repeatod the number
of four-digit figures would be (10)* = 10,000—this latter case would
inelude 0000 as one of the figures.

(h) In taking samples sequentially from a discrete sample space
(population), the sampling may be done either with replacements or withoud
replacements; that is, when an element is drawn from the population it is
gither returned or not returned Lo the population before another element is
drawn. In a population of n clements, the number of ordered samples of
size # then is 7 for sampling with replacements, whereas in sampling with-
out replacements, the corresponding number of ordered samples is (n) ..

B.3 THE BINOMIAL COEFFICIENT

Tn a set of n distinguishable elements, the number of possible subsets of
b different clements cach (regardless of order) is given by the brnomeal

7 {(n)e
(:[:) == *;1'!— (13.3)

It may be emphasized that in Iig. B.2 the ordering of the & clements is of
significance {that is, different orderings of the same elements constitute
different sequences, or arrangements), whereas in Bg. B.3 the order is
irrelevant. Tn a set of & clements, the position of the clements can be
permuted k! times; hence, by virtue of Hg. B.2, we obtain Iqg. B.3 as the
number of different k-clement subsets {disregarding order).

Equation B.3 is defined only for kb < n. Using Bq. B.2 for {n), we have

()=

coe flicient

(B.3a)
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(;:) = (ﬂ, i? ;].,) B4y

Equation B.3 or B.3¢ is known as the binomial coefficient because this ig
precisely the coeflicient in the binomial expansion of (x - y)x namely,

(n; - ft/)" = (8") xny(l + (;?) a‘.nﬁly + (;) ﬂ;"”'zyﬁ Y - (;l) :vﬂyn

Examples

from which # is clear that

(a)  Trom a population of » elements, the number of different samplog
M"Y

of size » is (%), This is the same as sampling without replacement, exeep
that the order is disregarded ; therefore the number is

LOI (n)
T \»

h)  Among 25 conerete eylinders marked 1,2, . . » 25; the number of
possible samples of five eylinders cach is

25\ 28!
(5> = 5’20] == 53,130

B.4 THE MULTINOMIAL COEFFICIEN T

If » distinguishable clements are divided into r different groups of
kyy kg, ooy ke clements, respectively, so that by 4 ky + .. + &y = n, the
number of ways to form such r groups is given by the mudtinomial coe fictent

. n!
= e {B.5
(n’ﬁ, kay o, kr‘) Ethel k) )
Among the n elements, the first group of £ elements can be chosen in G

ways. The second group of &y elements ean he chosen from the remaining
{n — k) clements in CoFy ways, and so on, The total number of ways
of dividing the n clements into » groups of &y, ke, . .., by, therefore, is

?t) (n - icl) (n —Jey e kg — e — ic,._g) (Ic,) __onl
]1:1 fea e ]Cr 161”62! coa ke

B.5, STIRLING'S FORMULA 389

Example

In a given reglon, six carthquakes of intensities V, VI, VIE_ Ay oceur in
the next 10 years. Three earthgquakes of intensity V, two of VI, and one of
VI can oceur in

o = (0 different sequences
312111

B.5 STIRLING’S FORMULA
An important formula for computing the factorial of large numbers
approximately ig the Stéirling's formula:

nl o A/ D (n)then (B.6)
A proof of the formula can be found in Feller {1957). The approximation
is good even for n as small as 10 (error less than 197).



Appendix C

Derivation of the
Poisson Distribution

The Poisson distribution deseribes the probability mass function for (he
number of oceurrences of an event within a specified interval of time op
space. It ds the result of an underlying counting process X (¢), known ag g
Paisson process, which is a model of the random oceurrences of an event
i time (or space) £

‘The Poisson process model is based on the § ollowing assumptions.

L. At any instant of time {or point in space), there can be at most one
oceurrence of an event; in other words, the probability of n cecur-
rences of the event over a small interval A is of order o (At}

2. The occurrences of an event in nonoverlapping time (or space)
ntervals are statistically independent; this is the assumption of
thdependent increments.

3. The probability of an oceurrence in {t, 1+ At} is proportional to
Af; that is,

PLX(Al) = 17 = vt

where v is a positive proportionality constant.
On the basis of assumption 2, we oblain, with the theorem of total
probability,

PLX (4 ) = a] = PIX (@) = 2] P[X (a0) = 0]
+ PLX () =2~ 1]PLX(A) = 1]
- PLX QW) = & - 2] PIX (A1) = 2]
..im P

Then on the basis of assumptions 1 and 3, we obfain, using the notation

Peld) = PLX (1) = 27,
Pl ALY = [T — AL — o (A2 — .. Ipe () A A ey (D
4 0 {AD (D) 4 -
390
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Negleeting the higher-order terms, the preceding equation becomes

PUEA 2P @) 4 e
Al

Therefore, in the limit as At — 0, we obtain the following differential
equation for p.{t):
dp. (1)

i — (1) + v () (C.1)
[¢X2

1t should be recognized that Eq. C.1 applies for any & 2 1. For 2 = (}, the
preceding derivation leads to the following:
e® _ (€.2)
di
If the counting process starts from zero, the initial conditions associated
with Egs. C.1 and C.2 are
D) = 1.0 and  p,(0) =0
The solution of Iig. C.2 with the first of the initial conditions yields,

f(_)]' T o= (})
pyil) == ¢

Yor x 2 1, the solutions to 1q. C.1 are

() = vte™"

(v):
and for a general 2,
(Vt}r a i
pel) = e (C.3)

Equation (.3 is the Poisson probability mass function, in which the
parameter » is the mean occurrence rale of the event,
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Dispersion, 7, 9, 90
measure of, 7, 88-90
Dissolved oxygen (DOY, 7, 17,52, 165, 235,
238, 251,255,256, 300, 302, 3006,
321, 365, 366,375
Dissolved solid, 319, 320 ]
Distance, 214, 243-247, 258, 260, 315, 358
distance downstream, 313, 313 )
Pistribution function, see Cumulative
distribution function
Distributive rule, 33
Drainage system, 71
drainage area, 11
drainage water, 211
Drill hole, £19
Drought, 30
Duality refation, 35

Farthquake, 30, 69, 73,77, 114, 148, 161,
q164 168 277 340 341 377 89
intensity, 73, 121, 389
occurrct{cc, 69, 121, 161, 164, 340, 341
Lfficiency, 135, 378
of estimator, 220, 223
Effluent, 165
Eisenhart, 361,376
Elasticity, theory of, 184
¥lderton, 133
Llectrical power, 377
Electronic distance measurement, 233
electronic ranging instrument, 245
Elevation, ’:415%2350
Elongation
I 111binkm<,nt 16, 168, 252, 254, 364, 368,
369, 3’,'4 375
lrj;nergem‘y conlrul system, 124
Emergency power, 124, 377
Empirical relation, 307 310
Energy Lonsumptmn 288 LYY
Energy line, 217
Engineering planning and design, 1, 12, 17,
330, 354
Enginecring system, 1, 360
Lquipment, 19, 108
construction cqulpmml 106, 154, 161,
167, 359 o
Erlang distributiou, see Gamma distribution
Error, 11, 15, 221, 324
of estimation, 221, 255, 329, 332, 347-
349
of measurcment, 15, 194, 325, 349, 357,
358
prediction or modci error, 11, 324
propagation of eryor, 13, 199 245, 246
standard error, 233, 244 247, 258, 260
systematic error, 24"5
Esopus Creek, 258
Estimation of correlation cocfficient, 315
Estimation of parameter, 254, 255, 281
320, 330, 337, 349, 354
interval estimation, 133, 254
maximum likelihood method, 222, 228-
234,252,254
method of moments, 222, 223, 254, 255
point estimation, 220, 254



402 INDEX

Estimation of proportion, 252
Lstimator, 222, 232, 236, 253, 254, 329,
337
Bayesian estimator, 331
expected value of, 223
minimum variance estimator, 229
unbiased estimator, 223, 231
variance of, 223
Evaporation, 211
Event, 19, 80
certain event, 26, 37
collectively exhaustive evenits, 30, 53,56
combination of, 27
complementary event, 26, 37, 47
impossible event, 26, 30
mutually exclusive events, 20, 30, 37,38
40,41, 51,53, 56, 80
union and intersection of, 27, 28§
Excavation, 182
Exceedance, 109, 112, 150, 185, 210, 340
Expected cost, 13, 14, 186
Expected loss, 206
Expected value, see Mean value
of estimator, 223
of sample mean, 231
Experience, 330, 332, 351, 370
Expesiment, 128, 330
experimental outcome, 331, 337, 344
Exponentiat distribution, 92,120,122-125,
166, 167, 174, 204, 213, 214, 224,
229,269, 270, 352, 359
shifted exponential distribution, 123
lilxponen;ial probability paper, 269, 272,
28

¥

Extremal probability paper, 270, 274
Extreme-value distribution, 133, 145, 261,
270,274

Fdistribution, 133
Factor of safety, 22, 205
Factorial of large number, 389
Faiture, 256
failure surface, 206
of structure, 55
Ialsework, 377
Family income, 313
I'are increase, 321, 322
Fatality, 355
Fatigue, 341
fatigue crack, 114
fatigue life, 4, 10, 14, 227, 230, 301, 307,
308, 311, 315
FFeller, 389
IFetch, 173
Fill material, 364, 368, 369, 374, 377
Finite population, 127
Finite sample space, 23
Fire, 75, 357, 358
First mosment, 95
First occurrence time, see Recurrence time
First-order approximation, 191, 197, 199,
200,216, 218, 245
I“issure, 77
Fixed support, 143
fixed-end moment, 63
Flaws, 215, 341-343

flaw detection, 70, 341, 342
inweld, 23, 70, 341, 351, 376
Flexibility, 218
Hood, 30, 65,69, 71, 77, 113, 154, 157.
159, 160, 161, 211, 212, 238, 257
annual flood of a river, 109, 158, 160
control dike, 159
control system, 106, 109, 211
Flow velocity, 204
Footing, 182
column footing, 58, 146, 218
settlement of, 50, 184, 218, 327
Force, 147, 203, 322
Foundation, 14,51, 146, 158, 212, 377
foundation wall, 18
Foundation engineering, 73
Fourth central moment, 248
Fraction defective, 360, 361, 366-368, 373.
375,377
fraction defective criterion, 372-375
Fracture, 113, 341
fracture toughness, 10, 264-267, 279
Freeboard, 173
Freeway, 149
Frequency diagram, 24,6, 8, 132, 261,276
cumulative frequency, 277-279
observed frequency, 274, 276, 277, 285
theoretical frequency, 274, 276, 277
Freund, 226, 236, 249
Friction, 204
friction factor, 204
I'rost depth, 299
Frost duration, 324, 325
Funetion of random variable, 178
moments of, 191
mullipie random variables, 174, 190, 198
product of random variables, 183
quotient of random variables, 183
sum of independent normal variates, 178
sum of Poisson random variables, 175

Galligan and Snodgrass, 316
Gamma distribution, 124-126, 216,223,
224, 351-354
gamma density function, 125, 126, 341
Gamma function, 126, 129
incomplete gamma function, 126
incomplete gamma function ratio, 127
Gamma-Normal distribution, 352
Gap length, 8, 166, 283, 284
Guaussian, 152, 154, 160, 164, 166, 180,
181,187, 189, 205, 207-210, 225,
232,235-237, 240, 242, 245, 249-
257,261,263, 300, 345-351, 358, 3
369-378; see qiso Normal distribution
General function of random variable, 196
Geodesy, 16
geodetic engineering, 248
geedetic measurement, 15
geodetic station, 245
Geometric distribution, 110-112, 125,224
return period, 110
Geotechnical design, 14
Girder, 69
Goldman and Ushijima, 314
Goodness-of-fit test for distribution, 261,

274, 276,277, 279, 281 o
Chi-square test, 26§, 274-277, 279, 281,
284, 285
Kolmogorov-Smirnov test, 261, 274, 277-
279, 281
Grandage, 327111
Gravel pit, )
Gross national product (GNP), 288, 322
Gunlhel,{’lél,lzﬁf\s 270
Gumbel distribution,
(iumbcl probability paper, 270, 273, 274

Haid, 197, 248, 250, 289, 361, 376

Hardy, Littlewood, and Polya, 141

Hazen, 262

Heathington and Tutt, 31302

Hierarchy of operations, 33

i-lighcr-ofder moments, 96, 198, 199

Highway, 43, 84, 149, 150, 162, 238, 299,
360

intersection, 20,46, 117
interstate highway, 54
network, 61, 66
project, 108, 254
repair, 67
Histogram, 24, 6-9, 227, 243,257, 274,
275,284
Hoel, 228,229,274
Hognestad 6%84
Hoeusing, 206
lrlur;‘icabne, 13, 14,77, 163, 206, 252, 314,
315
Hydraulic analysis, 154
Hydraulic head, 155, 204
Hydraulic radius, 211')‘3
Hydrelogic design, 13
I—I;pcrge%meiric distribution, 127, 360

{dentically distributed random variables,
232,244, 365

Impact pressure, 198, 204 ]

Impact speed in automobile accident, 8

Imperfection in modeling and estimation,
10

Independent increment, 390
Independent observations, 228
Independent random variables, 231, 244,

Inertia force, 168

Inference see Statistical inference

Inferential method, 254

Infinite sample space, 23

Inflow, 73, 209, 211

Influent, 202, 212 221

Enherent varialility,

Inspection, 16, 109, 167, 254, 341-344, 360,
365, 366, 308, 370, 376

inspection plal}, 3]61, 304, 361’1’1,8375

{nstitute of Traffic Lingineers,

Interarrival time, 8, 166, 167, 229, 283, 284

International Association of Chief of Police,
118

Intersection of events, 27, 28, 31

Interval estimation, 221, 231, 243, 248, 254

Intuition, 330

Inverse function, 171, 172

INDEX 403
Frrigation, 211

Joint distribution function, 134
foint probability, 318 )
Yoint probability density function, 134,
137,169 -

of bivariate normals,
Joint probability distribution, 134, 137
Joint probability mass function, 134-136
Jointly normaf, 138, 289, 290, 318
Jordan, Eggert, and Kneissel, 199
Judgment, 329-334, 337, 354, 359

Kimball, 263 177

Kinetic energy, -

Kolmogorov-Smirnov (K-8} goedness-of-fit
test, 261, 274, 277-281, 284, 285

Kothandaraman, 285, 326

Lambe and Whitman, 295
Land arca, 246,247,259
Lead concentration, 70
Leakage in pipeline, 27
Least error, 287
Least-squares method, 16, 287
least-square criterion, 297, 319
least-squares estimate, 288, 290, 294, 321,
323,325 _
leasi-squares regression, 288, 298, 307,
321

Left-turn, 30, 252
left-turn bay, 117,118
left-turn lane, 29, 39
left-turn pocket, 61
Lens, 206
Life, 124
operational life, 108, 124
usefui life, 14, 912,f158
see also Fatigue lite
Likelihood, 1(%9, 112,214, 228,331, 331,
339, 356-358, 367
Likelihood function, 228, 229, 337-341,
344-347
fogarithm of, 228, 230
Limit condition, 187, 188
Limiting p}'ocz&gi%
Line of sight,
Linear fm%ction, 245,290, 297, 306
mean and variance (if'fﬁ)i a1
of normal variates,
Linear graph in probability paper, 262-265,
267,269, 270, 281
Linear mogcl, 289 a1
Lincar prediction, 315
Lincar i‘egression, 286-290, 294, 300, 303,
306, 307, 322
Linear relationship, 140, 287, 300, 315-319,
328, 323
Linear trend, 2964, 292, 307, 313
Linsley and Franzini, 240
Lipson and Sheth, 376
Liguefaction of sand, 73
Little Deschutes River, 280
Load, 13,21,24,29,42, 58,195, 200, 203,
205, 208, 210, 212, 230, 359
concentrated load, 152
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dead and live load, 181
design load, 195
load test, 322, 332, 333, 338
proof load, 59, 355, 357
uniformly distributed foad, 152, 186
wind load, 239, 332, 339
Loading time, 68
Logarithmic normal, see Lognormal
Logarithmic paper, 270
Logarithmic transformation, 103, 315
Lognormal distribution, 102, 153-156, 158,
171, 184, 186, 190, 203, 204, 212,
216, 225-228, 230, 256-258, 2635,
267,276,277, 285, 350, 352
product of lognormal variates, 184-189
relation to normal distribution, 104
relation of parameters to mean and
variance, 104, 106
Lognormal probability paper, 265-269, 281
Lass function, 331
Loucks and Lynn, 17, 365
Lower limit, 238
Lumber, 4, 377; see also Wood

Machine, 108
design of, 13
Main descriptors, see Random variable
Maintenance, 154
Malfunction, 107, 108
of machine, 63
Malhotra and Zoldners, 310
Manning equation, 217
Mapping, 80
Marginal probability densily function, 138
of normal variates, 139
Marginal probability mass function, 135
Markov chain (or Markov process), 120
Martin, Memmolt, and Bone, 313, 327
Material defect, 341
Material of construction, 369
Material supply, 27
Mathematical expectation, 88, 191, 197
Mathematical Society of America, 47
Mathematics of probability, 36
Maximum likelihood estimator, see Meihod
of maximum likelihocod
Meadows, Meadows, Randerss, and Behrens,
288,322
Mean life, 93, 124
mean time-lo-laitare, 124, 283
Mean occurrence rate, 115, 275, 391
Mean recurrence time, see Return period
Mean sea level, 111, 160
Mean-square vaiue, §9
Mean-value, 7, 88, 90, 91,94, 97, 104, 131,
139,226, 232, 233, 245, 249, 254-
257,264, 284-286, 290, 297, 319,
331, 337, 345-347, 350, 353, 354,
359, 369
of general function, 196
of finear function, 191
poepuiation mean, 226
sample mean, 226, 228
Mean-value funciion, 286, 287, 297, 298,
303. See also Regression equation;
Regression line

260, 325, 349, 356-358, 365, 366,
369, 375, 377
theory of, 119, 243, 244
Mechanics, 142
Median, 89, 91,93, 105, 150, 151, 265,
2606, 269, 281
Methad of maximum likelihood, 222, 228,

Measurement, 193, 201, 214, 243, 246, 259,

maximum likelihood estimator (ML),
222,228-231,252, 254, 255, 345
Methed of moments, 222, 223, 254, 255
Military Standards (MIL-STD), 374, 376
Miller, 308
Mitchell and Woodgate, 195
Mixed random variable, 82
Modal value, see Mode
Mode, 88,91-93, 132, 150, 151, 282, 331,
345, 356
Modulus of elasticity, 4, 9, 316
Modulus of rupture, 316
Moisture content, 369, 371
Moment capacity, 152
Momenti-gencrating function, 96
Moment of inertia, 94
Moments of a random variable, 95, 96, 223,
226,254
higher moments, 223, 226, 248
Moments of functions of random variables,
191-202
linear functions, 191-196
product of independent variates, 196
general function, 196-202
Maonocacy River, 240, 268, 269, 293, 318
Morse, 280
Most probable value, see Mode
Moulfon and Schaub, 300, 324
Multiple correlation, 319
Multiple linear regression, 286, 297, 299,
307,313, 319, 325
Multiple random variables, 133-145
Multiple stage sampling, 366, 375, 376
Multiptication rule, 47
Munse, 308
Murdock and Kesier, 311
Multinomial coefficient, 388
Mutually exclusive events, see Lvent

Natural hazard, 133, 164
Navigation lock, F67
Negative binomial distribution, 113, 125
Negative exponential, see Exponential
distribution
Network of construction uctivities, 182
{rucking network, 180
Nishida, 309
Noisc intensity, 216
Noise poHution, 216
Nondestructive test (NDT), 147, 342
Nonlinear regression, 286, 300, 303, 315
Nonlinear relationship, 141, 302, 319
nonlinear function, 245, 325, 326
Nonlinear trend, 300
Nensymmetry, 88
Normal distribution, 97,152, 179, 189, 211,
222-225,233,137, 244, 249, 251,

256,262,264, 276,277, 281, 1R4,
289, 293,299,321, 345-352, 373
bivariate normal distribution, 138, 289
standard normal distribution, 98, 237,
263
table of normal probability, 235, 380
see glso Gaussian
Normal population, 234, 249, 251, 345,
349

Normal probability paper, 262-265, 279,
281,284,285

Normal variate, 205, 206, 209, 212, 218,
233,249,258, 263, 293, 323

Normalization of probability measure, 37,
43, 337, 341, 344, 345

nth moment, 96

Nuclear power plant, 109, 24

reactor structure, 168
Number of distinct sequences, 386

Observations, 20, 22, 242, 252, 259, 307,
324

observational data, 219, 221, 222, 233,
309, 329, 330, 331,333, 334, 337,
338,347, 348, 351, 354, 358~

QOcean wave, 198, 203

Offshore structure, 13, 111, 206

Ohio River, 285

Open channel, 217

Operating charagteristic (OC) curve, 316,
362-364, 376

Operational rules, see Sets

Optimat, 12, 14

optimal inspection plan, 361, 364

Origin-destination (O-1} trip length, §

Qutflow, 73, 211

Overdesign, 13

Overioad, 113

Qverturning, 68

Oxygenation rate, 285, 326, 327

Parameter of distribution, 88,92, 97, 103-
106, 129, 212, 219, 220-224, 226-
231, 252, 254-256, 309, 330, 331,
337, 338, 344-347, 350-353, 354,
356,357, 359
Parking, 8, 71, 308, 302-306
Parrati, 243
Partial derivative, 137
Pavement, 49, 56, 59, 158, 299, 360, 378
airport, 12, 370
Payne, 314
Pearson, 131
Pearson and Johnson, 131, 133
Pearson system of digtribution, 133
Peck, 281
Penalty function, 151
Percentile value, 101, 106, 150
Permutation, 386
Photogrammetry, 16, 248, 325, 349, 350
photogrammetric measurements, 15
Physical process, 97, 133
Pier, 69, 164, 168, 201, 349, 350G
Pile, 155, 157, 334
capacity, 58, 59, 2506, 338
foundation, 58, 332
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Pipe, 168, 204, 209
Pipe flow, 155, 204
Pipeline, 27, 36
Ploiting position, 262, 263, 265, 267, 269-
271
Paoint estimation, 221, 222, 228, 243
poini estimate, 226, 231, 244, 254-256,
346, 348
point estimator, 228, 244, 245,337
Poisson distribution, 115, 116, 175, 224,
275, 351,352,390
derjvation of the, 390
sum of Poisson variates, 175
Poisson process, 114, 116-121, 123,125,
161-165, 167, 168, 175, 176, 206,
207, 214, 283, 335, 340, 351, 357,
390
assumptions, 114-115, 390
relation to Bernoulli sequence, 115
Pole, 208
Poliutant, 212
Poliution, 52, 57, 70,72, 75, 165, 166,
216,376 _
Polluiion control, 72, 360
Pool temperature, 306
Poputation, 204, 300, 302-304, 315, 320,
323

density, 313
mean, 133, 226, 231, 233, 234, 238, 240,
243,248,257, 346
in sampling, 127, 220-223, 232, 244, 248,
249,254,262, 265, 281, 344, 345,
387
standard deviation, 239
variance, 133, 226, 236, 240, 248, 249
Passibility space, 19, 21
Possible outcomes, 20-22, 80, 1047
Posterior probability, 331, 335, 337
posterior distribution, 337, 338, 341, 345-
352, 354, 355, 357, 358 )
posterior probability density function,
340, 344, 345, 357 ]
posterior probability mass function, 332,
4

Posterior statistics, 353, 354
variance, 347
Power generating plant, 48, 63
nuclear, 149
Power supply, 49
Precipitation, 67, 77, 51, 211, 240242,
267-269, 292,293,318
Pressure, 6, 198, 204
Prestress concrete, 367
prestressing foree, 367
Prime mover, 124
Prior assumptions, 330
Prior estimate, 333
Prior information, 345-347, 349-351, 354,
358, 359
Prior probability, 331, 337
prior distribution, 336, 337, 339, 343,
349, 350-352, 359 )
prior probability density function, 337,
340, 344, 357
prior probability mass functien, 332,
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Prior statistics, 354
prior mean, 347
Probabilistic characteristics, 87, 88
Probability, 19, 36, 233, 252
axioms, 36, 37
basic concepts of, 19, 360
caleufation of, 22
conditionai probability, 43
expected probability, 52
mathematics of, 36

of union and intersection of cvents, 38, 41

role of probability in engineering, 1
theory of, 37

Probability density function (PDF), 3,82,

85,87,92,97, 146-151, 224, 228,
236,261, 269, 282

Probabitity distribution, 81, 96, 219, 236,

254, 261
common disiributions, 223, 224
derived distributions, 170, 191
empirical determination of distribution
modets, 261, 2§1
useful distributions, 97-133
vatidity of distribuetion model, 274, 281

Probability law, see Probability distribution

Probability mass function (PMI°), 82, 84,
148-151, 224, 190

Probability measure, 22, 36, 252

Probability modet, 220, 222,261

Probability of damage, 112, 164

Probability of failure, 13, 15,42, 48, 51, 68
69,78, 146, 152, 153, 164, 181, 205,

20,210, 212, 333, 334, 338, 359
Probability of survival, 14, 153, 355, 357

Probability paper, 261, 262, 269, 270, 281,
282

commercial, 263
exponential, 269, 270, 272, 283
general, 269
Gumbel, 270, 273
lognormal, 262, 265
normal, 262-265, 279, 284
Rayleigh, 282
triangular, 282
Probability problems, 19, 22
Probability tables, 97, 99, 235, 237, 251
301,376,379
standard normal, 99, 103, 380
Producer’s risk, 364, 370, 371, 374-378
Product quality, 109
Product of random variables, 183, 190
of independent variates, 196
of lognormal variates, 184-189
Productivity, 135
Project, 91
duration, 15, 106
Projectile, 215
Proof test, 59, 355, 357
Propagation of crror, 15, 245
Praportion estimation of, 252
confidence interval, 253-254

!

Quality, 16
assurance, 360, 369, 376, 377
of conerete material, 17
control, 127, 159, 364, 366, 368, 369

Quarry, 68, 74

Queue, 74

Quotient of random variables, 183
quotient of lognormai variates, 184

Radius, 206, 259, 260
Rainfall, 100, 106

intensity, 2, 5, 13, 133, 255
Rainstorm, 116, 154, 211, 275
Random error, 15, 193, 214, 243
Random occurrence, 390

Random phenomena, anatytical models of,
&0

Random sampling, 221, 222, 228, 231, 232
244

random sample, 223, 231, 252, 344
Random variables, 7, 80, 222, 233, 252,
254

continuous, 81, 84, 94, 337, 318
discrete, 81, 84, 94, 330
functicns of, 170
main descriptor of, 87, 145, 223, 254
mixed, 82, 83
multipie, 133
Range, 215
range of random variable, 80
Rapid transit, 148, 162, 321
Rare event, 112
Rayleigh distribution, 225, 255, 282, 356
Rayleigh probability paper, 282
Reactlor containment structure, 367
Reaction, 21, 24, 29
Reaeration process, 326
Real fine, 80
real space, 133
Real world, 220, 222, 254
Receiver, 361
Reconstituted sample space, 43, 45; see
also Conditional probability
Recurrence time, 110, 121, 167
Reduction factor, 195, 359
Reduction of variance, 289
References, 392-397
Regression, 9
multiple regression, 297, 313
nonlinear regression, 300
Regression analysis, 286, 288, 290, 293,
294,297,300, 303, 306, 307, 309,
313,315,319, 322
applications in enginecring, 307
with constant variance, 286
to determine empirical relation, 307
with nanconstant variance, 294
1o validate theoretical equation, 309
Regression coefficients, 288, 294, 298
confidence intervals of, 289, 299
Regression equation, 2940, 293, 294, 296,
298, 303, 307, 310, 316, 317, 320,
321, 322
Regression line, 11, 288, 289, 292-294,
300, 309, 320, 322-324
Regression of normal variates, 289
Reinforced conerete, 284, 359
Rejection, 371

Relative frequency, 7, 20, 22, 37, 39, 136,
354

Relative likelihoad, 330 _
ReliabHity, 14, 50, 78, 153, 160, 185, 366,
371

l]mo‘i'y of, 124
Remote sensing, 16, 79
Repair, 67, 147, 154, 158, 167, 341, 342,
344

Repeated joads, 14
Repeated trials, see Bernoulli sequence
Research and development, 78
Reservoir, 67,73, 74, 76, 149, 207, 211
yeservoir dam, 69
Resistance, 150
Retaining wall, 68
Return peried, 157, 158, 166, 205, 257,
263
of Bernoulli sequence, 110, 112
of Poisson process, 121
Richardus, 195
Ridership, 321, 322
Right turn, 30
Ring, 259, 260
Risk, 13,115,160, 210, 341, 364, 365, 370,
373, 378
consumer’s and producer’s risks, 364,
370,371, 374-378
permissible risk, 232
risk-benefii analysis, |
River, 201, 257
flow, 313, 315
Road, 147, 309, 329, 335, 365
Road grader, 108
Rock quatry, 68, 74
crushed rock, 74
rock stratum, 155
Roughness coefficient, 217
Runoff, 13, 133, 154, 240, 241, 267-269,
262,293,318
Runway, 152

Safety, 206, 332
of building, 181
factor, 188
ievel, 187, 188
margin, 15
measure, 165
Sample, 156
data, 220, 253, 354,372
measurements, 243
Sampie of the population, 222
Sample size, 223, 226, 232, 234-236, 238~
240,242,243,251-254, 2717, 218,
209, 348, 360, 369, 370, 372-374,
376, 387
Sample point, 23
Sample space, 23, 88, 133
continuous, 23, 80
discrete, 23, 80, 386, 387
finife, 23
reconstituted, 4%,2353( 0
Sample statistics, 329, 36
sm]np]c mean, 7, 226, 228, 231-236, 238-
240, 256, 257, 260, 277, 297, 315,
345-350, 369-373, 375
sample moment, 223, ?_,49, 254
sample standard deviation, 7, 238-240,
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256, 258, 315, 346, 350, 358, 372,
373 _
sample variance, 226, 228, 236, 240, 248,
o256, 257,260,277,81%,320
Sampling by aitributes, 360, 375, 376
2;:3&3@ by variables, 360, 369, 375, 376
Sampling pian, 127,361, 367, 369, 371,
373-378

acceplance sampling, 360
multiple stage sampling, 366, 375
sequeniial sampling, 366, 375
Sampling theory, 222, 344, 345, 354; see
also Random sampling
Sampling with replacement, 387
Sampling without replacement, 387, 388
Sand, 328, 377
saturated sand, 73, 230
Scatter, 7,9, 141, 294, 295, 315
scaltergram, 9, 294
School cross-walk, 118
Schwarz’s inequality, 141
Second moment, 96
joint second moment, 140
Second-order approximation, 197, 199,
200, 216, 218
Seismic region, 69, 114
Sequence, 386
ordered sequence, 386
Service station, 162
Sets, theory of, 22
compiementary sef, 32
equality of sets, 31
operational rule, 31
subsets, 23, 24, 30
Settlement, 51, 104, 102, 146, 295, 296
of bridge supports, 60
differential settlement, 51, 141, 102,
295,296
excessive settlement, 51
of foolings, 50, 184, 218, 327
Sewer, 157, 211
sewer nefwork, 209
sewel system, 154
Shear force, 143
shear stress in soil, 7, 281
Shell structure, 101 ]
Shifted exponential distribution, yee
Exponeniial distribution
Shortage of material, 76
shortage of concrete, 27
shortage of gas, 162
shortage of steel, 27
shortage of water, 164
Shull and Gloyna, 313
Significance level, in Chi-square test, 274,
275,277, 283-285
in Kolmogorov-Smirnov test, 278-280,
284
Simulation, 349
Simultancous equations, 298
Skewness measure, 94
skewness coefficient, 94, 132
Slip sutface, 77
Stope, 206,217
Sludge, 202
Smeed, 309
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S-N relation, 307, 308, 311
Soft lenses in soil deposit, 377
Soil deposit, 119

soil stratum, 157, 256, 358
Solid waste, 210, 378
Specification, 159
Speed, 242, 325, 326

speed-tratiic density relationship, 314, 315
Squared deviation, 89
Squared error, 287, 294, 297
Standards, 16, 252, 255, 360

of acceptance, 16, 360

pollution control standard, 109

of stream guality, 17, 165, 365, 366
Standard beta distribution, 130
Standard deviation, 89-92, 94,97, 232, 233, compaclion, 65, 66

245,246, 256-259, 264, 284, 285, 297, density, 7
%gg, 320, 321, 345, 347, 348, 350, 358, Success run, 366

k Sufficiency of estimator, 220, 223
Standard er;m‘, 233, 244-247, 258-260, 349,
0, 358

observed in histograms, 3
Variance, 89-94, 97, 104, 131,139, 145,
149-151, 226,231, 233, 2406, 248,
251-254, 257, 284, 290, 293, 294,
208,299, 313, 319-320, 348, 353

stress range, 282, 307, 308
Stress-strain curve, 323
Strike, 76, 161
Structural damage, 75, 112
structural fallure, 55
structure reliability, 181
Structures, 161, 205, 256, 341, 342, 355
357, 367 '
design of, 13, 359
structural component, 70
superstructure, 214
temporary structure, 157, 339
Student’s t-distribution, see t-distribution
Subdivision, 71, 75
Subgrade, 156

Time-{o-failure, 124, 283, 359
Tolerable fraction defective, 374, 376
Tornado, 55, 109, 163, 167
Total probability theorem, 52,112,120,
135, 138,331, 332, 348, 390 : 3, 3
Tower, 164 approximate variance, 197 4 288, 289
Trade E)ffs, 12,14,15 7 209 cond}z}l;}nal variance, 143, 144, s s
67,169,207, 209, 316
lldif’?z%4 ’2?2?’215621, ’3109,’329, 334,348 confidence interval of, 248-252
accidenfs, 43,134, 125,329, 335,355 of estimator, 223
congestion, 152 af general function, (191, 196
count, 20 ’ of lincar funciion, 191
cngilw’cring 310, 329, 335 population variance, 226, 228
highway traftic 54,1350 sample variance, 226, 228, 24(8 .
light, 117 ’ of sum (}f random variables, 192, 193, 195
toll, ’161 Variate, 97 ] 126
volume, 118, 149, 308-311, 323, 324 Vehicle speed, 242, 314, HS 32 732(
Transformation, 233, 286 relation with 5stoppmg distance, 320
Transitional probability, 73 Velocity, %{}4, 215, 211{0 4453
Transmission tower, 110 Venn diagram, 26, 39, 40, s 2.9
radie tower, 258,259 8. 72.73. 148 01f :Jx]ltp;xjcg}__lg‘;}tgLevzcén;,g ,
i 28 , 73, s of uniot cvents, 28,
lmnmz)%ﬂatlon, maodes of, 28, AR,
Volume, 215
Voorhees, 312

Sulphur dioxide, 376, 377
Sum of random variables, 189
sum of independent Poisson variates, 175
sum {and difference) of normai variates,
179, 180, 232
sum of squares, 226, 250

Standard normal distribution, 98, 237, 263
table of standard normal probability, 380
Standard nermal variate, 98, 171, 177, 233,
234, 238, 250, 263, 265
Standard value, 369, 374 Supersonic transport, 52
standard mean-value, 370-372 Supplier, 361
Standard variate, 265, 269, 273, 282 Surveying, 13, 743, 245, 248, 349, 350,
Statistical estimation, see Estimation 357,358
Statistical independence, 46, 48, 84, 107, 110, Suspended solid, 202
112,120, 135,137, 140, 143, 144, 175, Symmetry, 94, 99
177-179, 181, 182, 184, 193-196, 199, Systematic error, 15, 243
206, 207, 209-212, 215, 216, 218, 232,
244,334, 355,377, 390
Statistical inference, 219, 220, 222
Statistical method, 319
Statistics, 10, 16
Steel, 239
reinforcement, 257, 281, 285
Stirling’s formula, 389
Stopping distance, 325, 326
Storm, 55, 154, 162, 240
sewers, 154, 157, 209, 211
Strain energy, 172
Strain gage, 128
Stream, 211, 326, 375
flow, 313, 315, 350

209
Travel times, 8, 61, 148, 149, 180, 205,
209,213,321, 3582
Trials, 106, 114, 120, 25
Triangular distribution, 133, 147, 148, 151,
158,225, 281, 357
triangular probability paper, 282
Trianguiation, 16
triangulated clevation, 325
Triaxial specimen, 230
Trilateration, 16
Trip distance, 312, 313, 315
trip generation, 313 _
trip time, 209, see alyo Travet times
Truss, 42, 162
Tunnei, 77
Turbidity, 319, 320
Typhoons, &

Ultimaie joad, 284, 359

Ultimate strain, 2?1,3521’35

Ultrasonies, 49, 56,

Unbiased estimator, 220, 223, 231, 248,
288, 295,298

Unbaised sample variance, 226, 248

Waiting time, 74, 148

Walker, 282

Waste trealment, 64, 210, 212, 355, 378
waste water, 202 _ .

Water supply, 36, 63,67, 76, 104, 207
distribution sysiem, 158
pipe system, 70, 168
water consumplion, 67, 164, 320, 321

Waler level, 62, 63,73

Water quality, 109, 360

Water tower, 77

Watershed, 5, 13,67, 71, 211

Wave, 111
height, 4, 160, 173, 203, 255
pressure, 204
velocity, 198, 204

Weather, 214

Weighted average, 88, 89,226

Welding machine, 92 )

Welds, 70, 114, 147, 266, 267, 343, 376
cracks in, 147, 341
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table of, 383
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Tang, 341, 345, 348
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quality, 225, 365, 366, 375
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temperature, 280
Strength of material, 152, 238
compressive sirength of clay, 281, 290
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233,249,255, 276, 310, 315, 377
flexurat, 327
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shear strength, of clay, 281, 290
of fillet welds, 3
vield strength of reinforcing bars, 3, 257, 258
Stress, 212
bending stress, 4
cyclic stress, 215
extreme fiber stress, 186
shear stress, 7, 281
stress increment, 215

Target time, 15, 78
Taylor series, 197, 198
Tellerometer, 245
Temperature, 299, 300, 302, 306
freezing temperature, 23
of stream, 280
Tendon, 168, 367
Terrestrial elevation, 325
Test results, 233, 239, 330, 356, 369
proof test, 3558, 357
Testing validity of distribution, 274
Tharp madel, 355
Thayer and Krutchoft, 321
Theoretical models, 146
Third central moment, see Skewness
measure
Tide, 174
wind tide, 173
Time and space problem, 109, 110, 114

Uncertainty, 1, 200, 203, 218, 221, 238,
329, 347, 348
inherent randomness, 3, 221, 332, 354
in reai world information, 3
from modeling and estimation, 10, 221,
329,332,338, 354
Underdesign, 14
Underground water, 207
Uniform distributien, 86, 133, 214,225,
262, 338, 341, 357
Unifarm flow, 217
Unimodal, 89
Union of events, 27, 28, 31
University of Illinois, 264
Updating process, 341, 354
updating probability, 58
Upper limit, 238, 357

Variability, 3,11, 89,90,315,330,332, 347
inherent varjability, 221

flaws in, 23, 70, 3@2, 343, 353
shear strength of,
wind, 6, Gl,bl 10,162,164, 174, 252, 332
load, 239, 339
profil(—:,éiltl
tide, 17
velocity, 156, 163, 203, 2506, 258, 281,
314,315, 339
Wire, 113 ‘
Wood, structural grade, 156, 377
modulus, of elasticity, 316
of rupture, 316
wood beam design, 186
Work duration, 133
Workmanship, 351, 370
Wynn, 302, 304

Yield strength of steel, 3, 239, 257
Yield strength of wood, 186
Young's medulus, 323



