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Deformations of Reinforced Concrete Members at Yielding
and Ultimate

by Telemachos B. Panagiotakos and Michael N. Fardis

A database of more than 1000 tests (mainly cyclic) on specimens
representative of various types of reinforced voncrete {RC) mem-
bers (beams, columns, and walls) is used to develop expressions
for the deformations of RC members at yielding or failure {at ulti-
mate), in terms of member geometric and mechanical characteris-
tes. Expressions for the yield and the ultimate curvature based on
the plane-section assumption provide good average agreement
with test results, but with large scatter. The same applies to models
for the ultimate drift or chord-rotation capacity based on curva-
tures and the concept of plastic hinge | ength. Semi-empirical mod-
els for the drift or chord-rotation at member yielding provide good
average agreement With test results, but with considerable scatter.
Their predictions and the associated test results point to effective
secant stiffness at yielditng around 20% of that of the uncracked
gross section. An empirical expression is also developed for the
ultimate drift or chord rotation in terms af: steel ducrility, bar pull-
out from the anchorage zone; load cycling; ratios of tension; com-
pression; confinement or diagonal reinforcement. axial load ratio,
v = N/A," shear-span ratio; and concrete strength. This expres-
sion is characterized by less scatter than alternatives with a more
fundamental basis, and applies over a very wide range of parame-
ter values for all types of RC members used in earihquake-resistant
struciures, including béams or columns with conventional or diag-
onal reinforcement and shear walls, '

Keywords: deformation; ductility; stiffness; tests,

INTRODUCTION

The inelastic deformation capacity of reinforced conciate
(RC) members is important for the resistance of RC strue-
tures to imposed deformations, such as those due to settling
of supports, temperature or shrinkage, arid for moment redis-
tribution under gravity loads. It is even more important for
seismic loads because earthquake-resistant design relies on
ductility, that is, on the ability of RC members to develop
(cyclic) deformations well beyond elastic lirnits without sig-
vificant Joss of load-carrying capacity. Values of the force-
reduction factor R of conventional force-based earthquake-
resistant design depend on the deformation capacity of RC
members, while detailing rules are specified for RC mem-
bers so that they provide the required deformation capacity.

Due to the emergence of displacement-based concepts for
seismic design of new structures and seismic evaluation of
old ones, quantification of deformation capacity in terms of
georetric and mechanical characteristics of members and of
their reinforcement have attracted increased interest in re-
cent years. The 1997 NEHRP Guidelines for the Seismic Re-
habilitation of Buildings' base member evalnation on a
capacity-demand comparison in terms of {member) defor-
mations. These guidelines, known as FEMA 273/27452 and
more recently FEMA 356,% as well as other current proce-
dures for the analysis of the seismic response of RC struc-
tures, require realistic values of the effective cracked

ACI Structural Journal/March-Aptil 2001

stiffness of RC members up to yielding for reliable estima-
tion of the seismic force and deformation demands. If the
elastic member stiffnesses used for the analysis effectively
reproduce secant member stiffaess to yielding, even a linear-
elastic analysis with 5% damping can satisfactorily approxi-
mate inelastic seismic displacement and deformation de-
mands ¥ To this end, tools are needed for the calculation of
the secant stiffness to yielding for known geometiic and me-
chanical characteristics of RC members,

The secant stiffness to yielding and the ultimate deforma-
tion of RC members ate commonly determined (assuming
purely flexural behavior) from section moment-curvature re-
lations and integration thereof along the member length. Such
a calculation does not commmonly account for the effects of
shear and inclined cracking, bond-slip phenomena, bar buck:
ling, or even lpad cycling More advanced models that incor-
porate the effects of inclined cracking, bond-skip, and tension
stiffening, and account for the detailed o-& behavioi of the
reinforcement have 2lso been proposed for the plastic rota-
tion capacity of beams under monoton;ic_loading‘.i6 The pri-
mary motivation of those models was the quantification .of
the capacity for moment redistribution in connection with
the bond and fracture properties of steel, especially in rela.
tion with some brittle cold-worked steels currently used in
nonseismic o1 low seismicity regions of Burope Despite
their sophistication, these models have thus far not been very
successful in effectively reproducing the experimental be-
havior up to ultimate.,

Test results constitute the ultimate recourse for validation,
calibration, o1 even development of models. This is partice-
larly true for éomplex phenomena, such as the deformational
behavior of concrete members up to failure in monotonic or
cyclic loading With this in mind, a large bank of expetimen-
tal data was assembled 4rid used herein for the development
of simple models for the deformations of RC members at
yielding and at failure. The primary deformation measure
considered herein is the drift o1 chord rotation 6 of a member
ovet the shear span L. This measure captures the macro-
scopic behavior of the member as a whole, relates readily to
more global measures of seismic response—such ds story
drifts—while at the same time suffices for signaling faihure at
the local Jevel. Curvatures ¢ at yielding and ultimate are also
considered, as potential intermediate steps for the determina-
tion of the corresponding values of 8 for the entive member,
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Two approaches are pursued in this study: a statistical (or
empirical} approach, as in References 7 and 8; and a more
fundamental approach developed from basic principles and
the mechanics of reinforced concre‘te‘.g‘

RESEARCH SIGNIFICANCE

This study develops expressions for the ultimate deforma-
tion.capacity and for the deformation at yielding of RC mem-
bers, in terms of their geometric #bd mechanical
characteristics. Such expressions are essential for the appli-
cation of displacement-baséd procedures foi earthquake-re-
sistant design of new RC stiuctures and for seismic
evaluation of old ones They are also essential for a realistic
estimation of the effective elastic stiffness of cracked RC
members and structures, which is important for thé calcula-
tion of seismic force and deformation demands.

EXPERIMENTAL DATABASE

The database used in this study is comprised of 1012 tests
of RC members in unjaxial bending, with ¢r without axial
force. The full characterization of test specimeéns and the ex-
perimental results, as weﬂ*as the associated list of references,
is given in the Appendix.” Out of these specimens, 266 can
be considered as representative of beams because they have
unsymmetric reinforcement and were tested under zero axial
Ioad (all specimens have rectangular cross section, with the
exception of two, which have a T-section); 682 can be consid-
ered as column specimens with a symmetiically reinforced
square or rectangular section, tested with or without axial
force; 61 specimens are walls with a rectangular, barbelled,
or T-section; and 23 of the column specimens have diagonal

reinforcement, combined or not with conventional longitudi-
nal bars. : : : .

Most specimens were of the simple or double cantilever
type. In these specimens, some slippage of the longitudinal
reinforcement from its anchorage beyond the section of max-
imum moment is possible in principle, contributing a fixed-
end rotation to the overall diift of the specimen and increas-
ing the average curvature measured next o the end. Many
specimens were of the simply supported beam type, loaded
with a force at midspan. Due to syminetry in these speci-
mens, there was no slippage of the longitudinal reinforce-
ment from an anchorage block at the section of maximum
moment, except when the load was applied through a bulky
stub at midspan, with enough dimension along the specimen
axig for reinforcement slippage to develop on both sides of
the midspan section.

In 296 tests, the relative rotation between the section of
miaximum moment and a nearby section within the plastic
hinge region was measured and translated into an aver-
age eurvature ¢. In 124 of these tests, some slippage of
the reinforcement fiom its anchorage beyond the section
of maximum moment is, in principle, possible. In these in-

' ‘_F'IT_J:Q' Appendix is available in xerographic or similar form from ACT headquarters,
wiherg it wifl be kept permanently on file, at a charge equal to the cost of reprodaction
phas bandling at tims of request :
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stances, curvatures include the effect of the associated fixed-
end rotation '

In 963 specimens, deflections were measured in addition
to or instead of curvatures, to be translated herein into drift
8, that is, deflection divided by distance from the section of
maximum moment. If the deflection is measured at the point
of zero moment, 8is equal to the chord rotation of the section
of maximum moment. In 786 of these specimens, skip of re-
inforcement from its anchorage beyond the section of maxi-
murn moment was, in principle, possible.

With the exception of 35 of the tests where curvatures ¢
were measured and 88 of those where diifis 8 are reported,
testing continued up to failure. Failure in this study is identi-
fied with a clear change in the measured lateral force-defor-
mation response: in monotonie loading, 4 noticeable drop of
lateral force after the peak (at Ieast 15% of maximum force)
is interpreted as failure; and in cycling loading, failure is
identified with distinct reduction of the reloading slope, and
the area of the bysteresis loops and the peak force, in com-
parison with those of the preceding cycle(s). Such develop-
ments are typically associated with physical phenomena,
such as extensive crushing or disintegration of the concrete,
bar buckling, or even rupture Typically they coincide with a
drop in. peak force exceeding 15% of the ultimate force

Thie geometry of the test specimens in the database, the
amourt and layout of their reinforcernent, the concrete
strength; the type of steel, and the axial load cover a very broad
range. For thie 296 beam or columm tests in which curvatures
are repotted, the concrete (cylindrical) strength £,” ranges from
15 to 105 MPa, and the axial load ratio v = NIAyf. ranges

~from 0 to 0 95, For the 902 beam ot colimn specimens for

which deflections are reported, £, 1anges from 15 to 120
MPa, and the axial load ratio v = NIA, f.” ranges from 0 to

0.85. For the 61 wall specimens, £’ ranges from 15 to 60 -

MPa, and the axial load ratio V = NIAgf,” ranges from 0 to
0.9. The shear-span ratio M/Vk = L /h ranges from 1.0 10 6.5
for prismatic specimens, and 1.75 to 5.75 for wall speci-
mens. The ratio of diagonal reinforcement p, in each diago-
nal direction for the 23 diagodally reinforced column
specimens ranges from 0 to 1.125. The steel vsed in the 1012
tests can be classified in three grades: 824 tests utilized hot-
rolled ductile steel with hardening ratio J¢fy, of approximate-
Iy 1.5 and strain at peak stress €, around 15%; 129 tests had
heat-treated steel, such as the tempcore steel currently used
in Eurcpe, with /,/f}, around 1 2 and g, of approximately 8%;
and 59 specimens used brittle cold-worked steel with filfy of
approximately 1.1 and g, around 4%.

DEFORMATIONS OF REINFORCED CONCRETE
_ {RC) MEMBERS AT YIELDING

Deformations of RC members at yielding are important for
the determination of their effective cracked stiffness. In
earthquake-resistant design, they ate also important as nor-
malizing factors of member peak deformation demands or
supplies because of their expression as ductility factors.

Curvature ¢ is convenient as a deformation measure in that
it can be easily quantified in terms of section parameters and
material properties on the basis of the plane-section hypoth-
esis. If yielding of the section is signaled by yielding of the
tension steel, the vield curvature is

-
¢y = J-E}T—ky—de (1)
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whereas if it is due to significant nonlinearity of the conciete
in compression beyond a level &, = L3, /E, of the extreme
compression fiber stiain, then

g 131"

8, = %=
' T kd Ejkd

(2)

The compression zone depth at yield ky {normalized o 4) is

k, = (i*4%+ 208) "~ na 3)

where n = Ey/E , and A and B are given by Eq. (4) or (5), if

section yielding is controlled by the tension steel or by the
compression zone, Tespectively

N
A + 0. — 4
p+p +PV+b_f;,, ()]

e N
B =p+p’8+050.(1+8)+ L
p+p e +05p,(1+ )+Mfy

, N , N
A= 4Py — 2 mp iy,
PR Epd TP P g O

B = p+p’8+05p,(1+8)

In Eq. (4) and (5), p, p’, and p,, are the reinforcemnent ratios
of the tension, compression, and web reinforcement {=dl nor-
malized to bd) respectively; & = d'/d, where & is the distance
of the center of the compression reinforcement from the ex-
tréme compression fibers; b is the width of the compression
zone; and N is the axial load (compression: positive). In this
analysis, the area of diagonal bars times the cosine of their
angle with respect to the member axis is added to the rein-
forcement area considered in calculating p and p’.

The lower of the two values of Bq. (1) or (2) is the yield
curvature., Then, the yield moment can be computed as

M, k2 k
l;i% = qay{EcJQ—(o.su + a')——32)+ 6)

E.‘ ) . ’ ’ pv r ?
F[(1-k)p + (5, ~80p" ¢ 2a-a-s )}

‘The results of Eq. (1) through (5) can be compared with
the experimental values of the yield curvature in 296 tests in-
cluded in the database. The experimental value of curvature
was obtained as the relative rotation between the section of
maximum moment and a nearby section, divided by the dis-
tance of the two sections. In 124 cases, measured relative ro-
tations inclnde the effect of reinforcement pullowut from its
anchorage zone beyond the section of maximuimn moment,
and hence, may normally lead to overestimation of the cur-
vature, On the othes hand, the effect of tension stiffening,
due to concrete tensile stresses developing between discrete
cracks through bond, reduces the average curvature below
the value estimated from Eq. (1) or (2), neglecting tension in
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Table T—Mean, median, and coefiicient of
variation of ratio of experimentai-to-predicted
quantities at yielding

No.of . .1 Coefficient of
Quantity data | Mean | Median variation, %
e Pypredegrijcsy | 296 | 1.22 1.16 32
brep/Oyprearepiz— | 151 | g4 | g 5
columns
Wras/bppraargrz— | 135 | 330 | 139 25
beams -
My oMy pradegs) | 1008 | 106 1.02 20
By exp Oy prad eq (7) 963 | 106 1.00 36
Yy exp Oy pred Ref7 963 | 0.84 0.79 40
P 963 | 160 1.24 72
(%’Pffjﬁgﬁj‘% 963 | 113 1.03 44
(M, epl /38y o VELsc; | 963 | 067 0.59 64
(M 130, o VBT e 15 4240()2" 126 | 100 82

“When coefficient of variation is high, median is more representative measure of
average trend than mean, as median value of ratio of predicted-to-experimiental value
is always invérse of xatic of experimentai-to-predicted while mean value of both
ratios is higher than median.

the conctete Finally, curvatures determined from relative
rotation of two sections depend on the distance of the two
sections, as this affects the number of discrete cracks arid the
curvature variation along this distance Despite these inhez-
ent problems of experimental cuivatures, the overall agiee-
ment of Eq (1) through (5) with the data is fairly good and
the dispersion, as expressed by the coefficient of variation of
the 1atio of experimental-to-predicted values, is relatively
low (first row in Table 1; Fig 1(a)). Figure 1(a) does not
show any systematic increase of measured curvatures due to
possible ship. :

It is notewoitly that the simpler semi-empirical expres-
sions proposed in Reference 12 &y = I.’;,’fy/Esh for beams; ¥,
= 212f/Eh for rectangulai coliimns) provide overall an
equally good average fit to the same data as the fundamental
Eq. (1) through (5), with only slightly higher scatter (Table
1, Rows 2-and 3),

Tabie 1 (fourth row) and Fig. 1(b) sumnmarize the results
of the comparison between the predictions of Eq (1) through
(6) and values of M, measured in 1008 tests (after correction
for any P-A effects), .

Often the ratio My/9, is taken as the effective flexural ri-
gidity ET of the ciacked section. This ratio, however, does
not reflect many important effects, such as those of inclined
cracking and shear deformations along the menber. Such ef-
fects refer to the member (or 1ather, to the shear span L)) as
awhole. They are reflected in the magnitude of the drift 8 of
the shear span, which, in simple or double cantilever mem-
bers, is equal to the chord rotation at the member end where
yielding takes place, The part of the drift or chord rotation at
yield 0, that is due to flexural deformations equals §,7, /3.
Shear deformations ard inclined cracking, as well as any
fixed-end rotation due to bar pullout from the anchorage
zone, add to this. Test results in the database show thaf, when
pullout of longitudinal bats fiom the anchorage zone is not
possible, the difference between the experimental vahue of 0,
and the computed value of §,L/3 (attributed to inclined

“cracking and shear) does not have a statistically significant

dependence on any of the test o1 specimen parameters and
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may be considered as constant The fixed-end rotation due to
bar pullout is equal to the slip from the anchorage zone at
yielding of the tension steel, divided by the distance between
tension and compression reinforcement d-’. Slip should be
proportional to the bond stress demand at yielding of the ten-
sion steel, that is, to the ratio of the bar yield force A, Jytoits
perimeter nidy, (that is, to d,f,), and inversely proportional to
bond strength, that is, to J]?l Based on this reasoning, the
following relation was statistically fitted to the results of 963
tests for 0,

0.25¢e,d -

sz(d“d'),\/]?

The second term on the right-hand-side of Eq. (7) can be
con31derec_1 as the (average) shear distorfion of the shear span
at flexural yleldmg The third term is the fixed-end rotation
16! ppage: coefficient a; equals 1 if slippage of longi-
tudmal steel fiom its anchotage zone beyond the end section

iy posmble or 0 if it is not; g = fy/E is the yield strain of

. L
6, = ¢, + 00025 +a
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steel; and the yleld sttength hy and the concrete strength £’
are in MPa. '
Figure 2 compares the predictions of Eq (7) with the data

- from which it wds dérived. Statistics of the ratio of the exper-
‘imental tg the pmchcted value ate given at the fifth row of

Table 1. On the .average, Bq, (7) predicts the data well, but
the dlspex sion is latge. Overall, it does better than other mod-

els reported in the literatire 1 as far as agrcement in the
mean and the magnitude of the dispersion are concerned
(Rows 5 to 7 in Table 1).

The effective rigidity of the cracked RC member to yield-

ing El¢can be taken 45 £ = - ML/38,, with M, and 6, equal
to the expemnental values o to those detemnned fzom Eqg.

(6) and (7) with the aid of Eq. (1) to (4). Experimental and

calculated values of this efféctive 11g1d1ty are compared in
the eighth row of Table 1. The effective rigidity of the
cracked member to yielding is, on average, approximately
20% of that of the uncracked gross section E, I, It is gener-
ally s1gn1ﬁca11t1y lowet than the effective nglchty given in
10.11.1 of ACI 318R-95 (ET = 0.35E oL, for beams or walls,

El = 0.7E I, for colunins) for the calculauon of magnified
moments in compzessmn meribers and frames, or that given
in 10 12.3 of ACI 318R-95 {(EI= 0 .2E, Lo + Egl,) for the cal-

culation of the moment magmflcat[on in ponsway frames.

This is evident from Row 9 of Table 1, which gives statistics
of the rafio of the experimental effective rigidity at yielding
to the value in 10.12.3 of ACI 318R-95, The proposal in Ref:
erenice 13 to replace coefficient 0 2 in the ACT 318 expres-
sion with 027 + 0.006L,/h — 0.3M/Nh, to reproduce better
moment magnification in heavily compiessed slender mem-
bers, is also compéred in Row 10 of Table 1 with the expex-
imental value for axially compressed specimens, Although
developed in a completely different context, the Reference
13 proposal is in good average agxeement with the present
data and with the expression fo1 Bl = M, prealis/36) preg fitted
to them herein, albeit with cons1d31ab1y larger scatter than
this Iatter expression (Rows 8 and 10 of Table 1).

ACI Structural Journal/March-April 2001




Table 2—Statistics of ratio of experimental ultimate plastic (chord) rotation 9 pr 1o values suggested by

FEMA 273! and FEMA 356%°

epLﬂP-lepl.I’E‘ﬂZd[ Bueip 0 Fizma epi’.arp./epl,FEMAl B e /B0 ERLA Bpt, . epl.FEMﬂl Suep /M rmasa
Vibd Jf." , vnits: <100 10010200 200
b.in. | ,
(P—P¥Ppa n m ] o I n | G n m [ o [ m l s n m l o | m [ o
Beams with closely spaced stirrups’
<0 0 — -— — — 0 — — -— — 0 — — e —
010 0.25 42 | 118 | 036 | 128 | 035 | 11 | 1.3 | 046 | 132 | 05 0 — — — | =
2025 0 — — 1 = — 0 — - — — 1 - — — —
Beams without closely spaced stirrupst
_ [ =l =T -T-ToJ=T=T=T -] o] -1 =-]=T-
v=NIASS Columns with closely spaced stirrups/
<01 © 76 1.43 0.78 148 0.70 18 1.07 063 | 119 0.55 5 0.78 0.17 1.03 0.13
0.11t00.25 172 1.36 0.57 1.55 0.60 16 0.89 0.47 1.05 0.5¢ 0 — — — -
0.25t0 04 58 1.2 0.85 1.32 0.78. 5 112 0.52 124 043 2 0.09 0.13 042 0.05
204 28 1.¥ 0.35 1.18 0.7 0 — — — — 0 — — — —_
Columns with no closely spaced stirmps’ ‘
<01 44 295 133 2.59 1.14 3 279 1.72 2.58 141 5 2.01 0.54 2.18 0.40
0.1t00.25 26 ) 213 ¢ 115 2,37 0.98 4 0.93 0.39 1.02 Q.39 2 182 | 1.38 1.95 0.99
0.25t0 0.4 21 1.54 1.09 1.77 0.92 1 2.57 — 2.25 — 1 2.56 — 225 —
=04 12 274 1.57 238 1.08 | © — — — — 0 — — — —
(P -p Wl +v o Walls with confined boundariest
T =01 42 0.93 049 | 101 0.44 1 0.53 — 0.74 — 0 — —_ — —
0.11t00.175 8 0.65 {026 | 069 | 0.19 0 — — — — 0 — — - —
0.175 to 0.25 1 058 — .50 e 0 — — — — 0 — — — —
2025 0 — | — =T = 0 — | - | =1 = 0 — | — ] =T
. . . Walls without confined boundaries*
<01 1 128 .| — T1s [ = 0 — — [ =1 = 0 — - — | =
> 0.1 o | — 1 — — — 0 _ — — — 0 — — | — —
) i Diagonally reinforced beams )
‘3 JoesJom[oom[om [ o | — | — [ — [ =] 0] -] =] =7]c=

*m = mean; & = standard deviation; and 72 == number of tests,
*Stirrups spaced at fess than 4/3 and providing shear strerigth greater than .75V,
¥Confined boundaries according to ACI 318-95

ASSéSSMEN T OF FEMA 273/274 and FEMA 356
ULTIMATE DRIFTS OR CHORD ROTATIONS

. . oy - > -
Recent years have seen an inczeased interest in the estima-

tion of the available deformation capacity of RC members

from theit geometry, reinfoicement, and axial and shear
force levels. This interest has developed especially in refa-
tion to displacement-based seismic design and to seismic
evaluation and retrofitting of existing RC structures. The
“NEHRP Guidelines for the Seismic Rehabilitation of Build-

ings”l'3 give values of the ultimate plastic hinge rotation of

RC members as acceptable limiting values for primary or
secondary components of the structural system under the
collapse prevention earthquake, as a function of the type, re-
inforcement, axial and shear force levels; and detaiting of
RC members These guidelines imply values of the yield ro-
tation approximately equal to 0.0051ad for RC beams and
columns, or to 0.003rad for walls, to be added to plastic hinge
rotations for conversion info total rotations, which are approxi-
mately equal to the chord rofation 8 or drift of the shear span.
Acceptable chord rotations or drifts for primary components un-
der the collapse prevention earthquake are approximately 1.5
times lower; under the life safety earthquake, acceptable
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chord rotations or drifts for the primary and secondary com-
ponents are approximately 1.5 or 2 times, respectively, lower
than the ultimate {chord) rotations or dzifts. :

The present database can be used to assess the values giv-
en for the ultimate valué of the plastic rotation in the NEHRP
guidelines 1* To this end, 633 flexure-controlled cyclic tests -
to failure were identified from the database In thiese tests,
the 1atio of yield moment M, to shear span I  is less than the
calculated shear strength of the specimen, even after subse-
quent reduction of shear strength due to cyclic inelastic flex-
ural deformations (expressed through the displacement
ductility ratio g = 0,/8,). FEMA reports give values of
the ultimate plastic rotation 6, (which is approximately
equal to the total minus the imiplied yield rotation of 0.005rad
in beams or columns, or of 0.003rad in walls). Thus, for the
633 cyclic tests to failure Table 2 presents separately: a) the
ratio of the plastie part 8,; of the experimental ultimate chord
rotation (total rotation 5;: minus the experimental value of
0,) to the ultimate plastic hinge rotation in FEMA 356°; and
b) the ratio of the experimental ultimate chotd rotation 6, to
the sum of the FEMA 3567 plastic totation plus an implied
yield rotation of 0.005rad for beams and columnus, or of
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0.003rad for walls. For beams o1 columns with well-de-
tailed and closely spaced transverse reinforcement, agree-
ment between experimental and FEMA values is good on
average, albeit with significant scatter. For beams or col:
umns with pootly detailed or widely spaced tansverse rein-
forcement, the FEMA values are on the average well below
the experimental ones. If, however, the vales given in the
FEMA teportsm are meant to be mean m minus one standard
deviation ¢ bounds, then they are, on average, satisfactory
for poorly detailed beams and columns, but le on the unsafe
side for well-detailed members . For walls and diagonally re-
inforced members for which test results are available only
for well-detailed specimens, the FEMA. values are on the
high side, not only at the m-o level, but also at that of the
mean. (The difference for diagonally reinforced members is
partly dus to the axial load on some of the test specimens, whilé
the FEMA values! are quoted for diagonally reinforced cou-
pling beams.)

When the FEMA values ' and the experimental ones aie
compared on the basis of plastic rotations 8,4, the ratio of ex-
perimental-io-FEMA values is smaller, on average, but its
dispersion is highet than when the comparison is made on
the Dbasis of total ultimate rotations 6,. As a result, if the
FEMA values represent a m-6 bound, the usé of total rota-
tions 0, instead of plastic ones makes the FEMA values
more consistent with the available data. If, on the contrary,
they are meant to be average values, the useé of 0. 1 for beams
and colurans (but not for walls or diagonally reinforced ele-
ments) offers an advantage.

EMPIRICAL EXPRESSIONS FOR ULTIMATE
CHORD ROTATION OF RC MEMBERS

The database of 875 monotonic or cyclic tests, in which 0,
values are repoited and failure was controlled by flexure, is
used to develop more detailed tules for the prediction of the ul-
timate chord rotation or drift of RC members in terms of théir
geometric characteristics, material properties and reinforce-
ment, and axial and shear Toad levels Two approaches are ap-
plied to this end: a) a purely empirical approach based on
statistical analysis and described in this section; and b) a more
fundamental approach based on curvatures and on the concept
of plastic hinge length, as described in the following section.

The statistical analysis ntilized data ffom 242 monotonic
and 633 cyclic tests, all carried to flexure-controlled failuge.
Sixty-one tests refer to walls and the rest to beams or col-
urans, 23 of which were diagonally reinforced. Slip of longi-
tudinal bars from the anchorage zones beyond the section of
maximum moment was possible in 703 tests, most of them
cyclic

The analysis was linear régression of the log of 6, 0n the
control variables or their logs without conpling between the
control variables, assuming that the variance of the scatter of
log8,, about the regression is independent of 6,,. This implies
that for a given predicted value of 0,,, the coefficient of vari-
ation of the real (experimental) value is constant. In all 7e-
gression analyses performed, all the paramefers were
initially considered as control variables, but only those that
fumned out to be statistically significant for the prediction of
8, were retained. Moreover, the resulting values of the re-
gﬁéssion coefficients were rounded off,
- A separate regression for 234 monotonic tests on beam

and column specimens (the eight monotonic cases of walls

Were hot enough for inclusion) gives the following expres-
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sion for the ultimate chord rotation or drift 8, in monotonic
loading :

O mon %) = a1+ ) (0.157) ®

0425

max(0.0l, P fy)

r

L -’
' p} W
max(ﬂ 01, ?-f-’)

<

where

L/h=MIVh= shear-span 1atio at the section of maximum

moment;

steel ratios of the tension and commpression

longitudinal reinforcement (not including di-

agonal bars); for elements with disttibuted 1e-

inforcement between the two tlanges, the

entire vertical web reinforcement is included

in the tension steel;

Ty fy’ = yield stress of tension and cofupression stecl
(for bars of different grade the sums 2pf, ot
Zp’f, are used); o

o = uniaxial {cylindrical) concrete strength, MPa;

v =N/Af = axial Joad 1atio, positive for compression;

coefficient for the type of steel, equal to 1.25

for hot-iolled ductile steel, to 1.0 for heat-

tréated (tempeore) steel, and to 0.5 for cold-

worked steel. (The 234 tests include 168 with

hot-rolled steel, 32 with tempcore steel, and

34 with cold-worked steel); and

ag = coefficient for slip equal to 1 if there is slip-
page of the longitudinal bars from their an-
chorage beyond the section of maximum
moment, or to 0 if there is not (Bq. (7).

A separate regression was performed on the 633 cyclic test
data, including the 53 wall cases. The resulting expression
for the ultimate chord rotation 8, in cyclic loading is

P p’ =

a.sz‘,mon

f73 N F
OueselB) = Ty 1+ )1 - 040,,302% @)

1C0cep fl‘i‘)
4

.r.\’f ]-UOPCI)

/0N (%)0'41 .1( (13

where
s cye =  coefficient for the type of steel equal to 1,125 for
hotrolled ductile steel, 10 for heat-treated
(tempcore) steel, and 0.8 for cold-worked steel.
{The 633 tests include 542 with hot-rolled steel,
68 with tempcore steel, and 23 with cold-worked
steel); _
confinement effectiveness factor according to
Reference 14, adopted also in the CEB/FIP

Model Code 901 and given by

L
3 Sp _SeY L, b
“= ( ZbCJ(I 2]2)(1 6bckCJ o)
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Table 3—Mean, median, and coefficient of
variation of ratio of experimental-to-predicted
quantities at ultimate deformation

No. of N .| Coefficient of
Quantity data | Mean | Median variation, %
By erp/Su prec.eq(8) 234 | 117 1.0 57
O /B pred e 9) 633 | 105 101 41
Oy, eep/ O pred. cq 113 g75 | 106 100 . 47
Bu,ﬂple,%pmieq_(lz) 875 1.08 0.99 51
Dyt exp Doy preciasicon 261 | 277 2.15 82
P exp?Puz pred eq.(21) 261 | 0.94 0.64 91
PuepOupredeg ooy | 261 | 1.26 1.00 0
82 exp/Ou pred.eg (13-
ue?; 0),?57(;1? ) 633 123 099 83
eu.ezp/eu,prezieg.fijj—-
o e 242 [ 137 | 10 94 _
8y exp ey pred eq.t13)-
t{f;gf( zzﬁ?r;}, ;gﬁ( 1 875 153 1.20 87

*When coefficient of varation is high, median is more representative measure of
average trerd than mean, as median value of ratio of predicted-to-experimental value
is always inverse of ratio of experimental-to-predicted while mean value of both
ratios is higher than median

with b, h; denoting the width and depth of the confined core,
respectively, and b; the distances of successive longitudinal
bars laterally restrained at stirrup corners or by 135 degree
hooks;

Psxr =  Agfb,sy) =1atio of transverse steel parallel to the
direction x of loading;

fyp = yield stress of transverse steel;

Pg = steeliatio of diagonal reinforcement in each diago-
nal direction; and

A= coefficient equal to 1 0 for shear walls and 0 for

beams or columns.

The amounts of tension or compression longitudinal steel
do not appear in Eq. (9), although they wete found to be quite
important for the vltimate deformation in monotonic loading
(Eq. (8)). The reason is that very few of the 633 cyclic tests
have unsymmetric reinforcement (even when any web steéel
is counted as tension 1einforcement). Therefore, the {equal
and opposite) effects of tension and comipression reinforce-
menton 8, cancel out, and their composite effect turns out as
statistically insignificant.

The predictions of Eq (8) and (9) are compared in Fig. 3(a)
and (b), respectively, with the cxperimental data to which they
were fitted. These figmres show alse the lines below which
only 5% of the data fall. Statistics of the 1atio of the experi-
mental-to-predicted values of 8, are given in the first two
rows of Table 3. The cyclic Eq. (9) better fits the correspond-
ing data than the monotonic Eq (8).

The monotonic and cyclic groups of data are complemen-

tary: in the monotonic group members with unsymmetric re- -

inforcement and the less ductile types of steel are well
represented, whereas shear walls and diagonally reinforced
elements are not. The situation is reversed in the group of cy-
clic tests. To profit from this complementary relationship
and to fill any gaps of data in each one of these two groups,
a regression is performed on all 875 flexure-controlled tests
to failure—monotonic o cyclic—giving the following

0u(8) = oo 14 321 B0 2y
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Fig. 3—Comiparison of experimental ultimate chord rota-
tions (drifts) with predictions of: (a) Eq. (8) for 234 mono-
tonic tests on beams or columns, and (b) Eg. (9) for 633
cyelic tesis.
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where

0 = coefficient for the type of steel: equal to 1.5 for hot-
rolled ductile steel; 1.25 for heat-treated (tempcore)
steel; and 0 8 for cold-worked stesl. (The three types
of steel arc represented in 718, 100, and 57, Tespective-
ty, of the 875 cases); and '

Clgy = coefficient equal to 1.0 for monotonic loading and to
0 6 for cyclic loading typical of load-histories applied
in laboratory tests (in the 633 cyclic tests, the equiva-
lent number of inelastic half-cycles at peak displace-
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Fig. 4—Comparison of experimental ultimate chord rotations with predchzons of Eq. (11) for. (a) all
875 tests; (b} 234 montotonic tests of beams or columns, (c) 633 cycl;c tests, and (d) 61 shear walls.

mhent, n,, = Zi6,1/6,, zanges fiom 2 to over 50, w1th a
mean value of 13)

To account explicitly for the effect of cycling, the equiva-
lent number of inelastic half- cycles in each test n,, = ZI10,/0,,
was included in the régression as a conirof vanable.‘ 'Ihis
gives the following

@ 02"
_-s;y_.I)(l_O,:‘}Sawaﬂ)nT.l- (12)
eq

u neq(%) = Uy neq(i *

02

max(O 01, pff )f}
max[d@i,?—f;’-’j ’

(12

Fon ]
I,\0475 (wgfipuf J 100p,
2 11 )

In Eq. (12), the steel coefficient 0, ., takes the values
155, 1.35, and 0 9 for the three types of steel.

Statistics on the ratio of the experimental value of 0, tothe
predictions of Eq. (11) and (12) are given in the third and
fourth row, respeciively, of Table 3 As suggested by the
larger coefficient of variation resulting from Eq. (12), con-
trary to expectations, the fit to the data is slightly wosse if the
number of cycles is explicitly accounted for as in Eq. (12). It
seems therefore that what matters for 0, is whether or not
one or more full cycles with peak displacement amplitude
occur, and not the exact number of (equivalent) cycles before
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that, This is betf.er expressed by the zero-one type of variable
. 1dn by the equivalent number of (half) cy-
cles in Eq (12).; [hiis, Bq. (11) is selected as the best regres-
sion for~ the : edictlon of 8, amobg all alternatives
previously cons

For compatison Wlth Eq. (11), the mean and coefficient of
variation of the ratio of the experimental -to-predicted value
of 6, for other well-known empitical models of 8, of beains
or columins in monotonic loading are 0.74 and 62% for the
model in Reference 7, and 052 and 81% for Reference 8
These statistics refer to the 242 monotonic tests in the
present database. For the 633 cyclic tests, they are equal to
0.71 and 223% for the model in Reference 6, and 0.58 and
62% for Refetence 7. Therefore, Eq. (11) tepresents an ad-
vance over earlier empirical models.

Trom the statistical point of view, the smaller uncertainty
asgociated with the estimation of the coefficients and expo-
nents in the right-hand side of Eq. (11) {and expressed
through their coefficients of variation) is strong evidence of
its superiority over Eq. (8), (9), or {(12), The values of the co-
efficients of variation of most of the coefficients and expo-
nents in Eq. (11) are between 7 and 11%, except: a) those of
coefficient a; for the two less ductile types of steel, which
are approximately 16%; b) those of the bases in the powers
of v and 100p,;, which are approximately 20%; and ¢) that of
the base of 1000ip, f4/7,”, which is much higher. All corre-
sponding coefficients of variation in Eq. (8),(9), and (12} are
highier, and sometimes significantly so.
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Figure 4 compares the experimental values of 8, with the
predictions of Eq. (11). In Fig 4(a), the comparison refers to
all 875 data; in Fig 4(b) and (c), the comparison refers to the
2472 monotonic tests and 633 cyclic tests separately; and in
Fig. 4(d), the comparison refers to the 61 monotonic or cy-
clic data on walls. These figures also show the median line:
Oeq11 = Oy oy Of all the data and the Jower characteristic
line: B, 40,05 = 0.40,, .11, below which only 5% of the data
fall. This line can be considered as & practical lower bound,
for possible use in design or evaluation of RC members on
the basis of displacements.

Figure 5 compares the predictions of Eq. (11) with the
maximum chord rotation attained in 60 of the database cyclic
tests that did not lead to failure of the specimen. All data Jie
below the 45 degree Iine, further confirming Bq. (11)

The comparisons in Fig 4(a) to (d) suggest that there is no
systematic bias of any of the groups of data (monotonic, cy-

clic, o1 walls) with respect to Eq. (11). Moreover, analyses of

the scatter of the data about Eq. (11} have not revealed a lack
of fit with respect to any of the independent variables (with
rone exception: for /i > 6 Eq. (11) overpredicis 0, as the
lack of inclined cracking for such vatues of the shear span ra-
tio reduces overall deformations®). In other words, Eq {11
scatter is uniform throughout the full range of the indepen-
dent variables, including £, (that i, according to this analysis,
0, increases with f;” for values of £.” up to 120 MPa). Never-
theless, for high values of 0,, the predictions of Bg (11) seem
to be systematically on the low side, especially for the mono-
tonic data. Moreover, the dispersion of the data with respect
to the line expressed by Eq. (11)is large Both these features
seem to be intuinsic in the problem of prediction of deforma-
tion capacity of RC members: predictions of the monotonic
plastic rotation 6,7 between points of inflection along the
member using very sophisticated models exhibit the same
features,>® In these Iatter models, plastic rotation was caley-
lated by summing up contributions from discrete flexural or
shear cracks, taking into account tension stiffening between
them and employing very detailed models for band-slip, fot
the steel postyield G-¢ behavior and for the concrete, con-
fined or not. Nevertheless, in gencral they do not do better
than Eq. (8) or (11) for scatier and bias in umderpredicting
high deformation capacities. -

Certain aspects of the scatter about Eqg. (8), (9), (11), and
- (12) are due to the intrinsic variability of the deformation ca-
pacity of RC members, especially under cyclic loading. To
quantify this variability, 40 subgroups of practically idemnti-
cal cases were identified within the 875 specimens used for
the development of Eq (11). Each subgroup is comprised of
two to nine specimens with practically the same parameters
(evenf,” differs by less than 5%) The coefficient of variation
of the value of 8, within each subgroup ranges from 0 to
39%, with a mean value of 12.5%. This is an estimate of the
contribution of natural variability to the overall coefficient of
variation of 47% about the predictions of Eqg. (11).

Three further points are worth mentioning regarding the
variables at the right-hand side of Eq. (8), (9), (11), and (12):
1) an effort was made to include as a variable the depth % of
the section separately from the shear-span ratio L /k instead
of treating the walls separately. Despite the fact that a size-
effect on the behavior of RC membess is often quoted, this
alternative provided much poorer predictions than Eq. (9,
(11), or (12) and it was abandoned; 2) the 1atio of longitudi-
nal bar diameter dj, to stirrup spacing s appears as another
Important variable Nevertheless, on statistical grounds, inclu-
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Fig. 5—Comparison of maximum chord rotation dttained in
60 tests that did not reach failure, with prediction of Eq. (11)
for ultimate chord rotation,

sion of dy/s, as a separate independent variable is not allowed,
because it is strongly positively correlated with the transverse
steel 1atio p,, through s; and with the compression reinforce-
ment ratio p” through dy, {cf the strong positive correlation of
p and p” in the group of cyclic tests dominated by columns).
Indeed, given that p” is included as an independent vari-
able, inciusion of both d/s; and p_, Fmlf,” as separate, in-
dependent-variables leads to the conclusion that each one
of them separately has a very small influence on 8,,, There-
fore it was decided to keep only the 1atic of transverse steel
Psx as an independent variable, becaiise it is more important
statistically than d,/s;, for the magnitude of 8, As a matter of
fact, what signals the occurrence of failure in cyclic loading
is not bar buckliiig by itself, which is delayed when the value
of dy/sp, is high, but bar fracture—possibly initiated by the
curvature imposed on the bar at buckling. This curvature in-
creases with decreasing s;. This effect partly counterbalanc-
es the positive efféct of high dy /s on buckling and reduces
the beneficial effect of closely spaced stitrups on 0,; 3) the
1atio v, = N/(f,’A, + f,A; 1, Was considered as a variable in
Eq. (11) instead of v = N/, <A, as suggested in Reference 15
The resulting expression is almost identical to Eq. (A1), ex-
cept thatit has 0.125Y instead of 0.2" and that the base of the
power of 100p,; increases froin 1.3 to 1.4, Itis slightly better
than Eq. (11), as fa1 as the scatter and the coefficients of vari-
ation of the estimated coefficients and parameters are con-
cerned, except for the coefficients of variation of the
parameters referring to v,, (the 0.125) and to p and p’ (expo-
nent 0.275), which increase due to the statistical correlation
introduced by the presence of p and p” in both variables. Be-
cause this alternative expression suffers from correlation be-
tween two of its independent variables {(a serious flaw from
the statistical point of view), it is not emphasized herein, de-
spite the slight advantage it offers.

" Equation (8), (9)_, and especially (11) show quantitatively
how member deformation capacity is affected by the chatac-
texistics of the member and its reinforcement. Moze specifi-
cally, the following conclusions may be drawn:

1. Replacement of the very ductile hot-rolled steels tradi-
tionally used in seismic regions all over the world by the less
ductile heat-freated tempcore steels currently dominant in
Ewrope reduces member deformability by 15 to 20%. The
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use of brittle cold-worked steel reduces member deformation
capacity by half;

2. Pullout of longitudinal reinforcement from its anchor-
age zone beyond the member epd increases member deform-
ability, on average, by 40%. This effect is more evident in
cyclic loading (Eq. (8), (9). and (11));

3 Deformation capacity is reduced by 2 40% average due
to full cycling at the maximum deformation. The number and
magnitude of deformation cycles before ultimate seem to be
unimportant;

4 Shear-span ratio seems to be the most important param-
eter for member defoimation capacity: 0, increases with al-
most the square root of Lg/h. In almost 95% of the data, the
shear-span ratio is less than the threshold value of LJh=6.0,
beyond which inclined cracking does not occut, and defor-
- mation capacity may decrease with L./h for that reason;

5 Deformability increases with approximately the fourth-
root of the ratio of compression-to-tension reinforcenent
(the latter including the vertical reinforcement of the web of
shear walls). This finding comes mainly from monotonic
tests, as specimens subjected to cyclic loading typically had
symmetric reinforcement;

‘6 The increase in deformability with confining reinforce-
" ment was found to be less than was expected, especially in

monotonic loading. This was possibly due to the significant
deformation capacity found in membets with effectively no
confinement;

7. 'Within the range of axial load ratio v = N/A f; common
in earthquake-resistant design, deformation capacity de-
creases approximately linearly with v, dropping by almost

50% when V increases from zero to the balance oad;

8. Despite the presence of many elements with high-
strength concrete in the database, the influence of concrete
strength f,” on deformation capacity was found to be a8 pos-
itive as that of the compression-to-tension steel ratio for val-
ues of £ up to 120 MPa;

9 Diagonal reinforcement has a very beneficial effect on
deformation capacity: a steel ratio of 1 ot 2% along each di-
agonal increases 6, by 30 or 70%, respectively; and

10. A1l other geometric o1 mechanical patameters being
equal, the deformation capacity of a shear wall is lower than
that of a beam o1 column by 1/3 Statistically, this difference
cannot be attiibuted to size effects (that is, to the larger cross-
sectional depth & of walls). Physically, the difference can
only partly be explained by the effects of shear, ds in the
walls of the database failure was either purely flexural or doe
to the combined effects of shear and flexure; in none of these
walls was failure due to diagonal compression in the web.

ULTIMATE CURVATURE AND PLASTIC HINGE
LENGTH
Ultimate drifts or chord rotations are typically expressed
quantitatively on the basis of purely flexural behavior
{hrough the concepts of plastic hinge and plastic hinge length
Ly in which the entire inelasticity of the shear span is con-
sidered to be Jumped and uniformly distributed

L 0.5
0, = by + (4~ 0L(1- 7 2) (13)

s

The advantages of this formulation are that: a) it represents a
mechanical and physical model (fat of lumped inelasticity);
and b) ¢y, ¢, can be determined in terms of cross-sectional
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characteristics on the basis of the plane-section hypothesis.
The effects of shear, bond slip, and tension stiffening should
be dealt with through I, which is more a conventional
quantity satisfying Eq. (9?, rather than a physical quantity.

Under deformation-control conditions, the plastic hinge
will fail either by rupture of the tension reinforcement ox
when the compression zone fails and sheds its load. Depend-
ing on the confinement of the compression zope by irans-
verse reinforcement and on other parameters, these failure
modes may take place either at the full section level, or at the
level of the confified core after spalling of the unconfined
concete cover: For failure of the full section prior to spal-
ling, the comzesponding vltimate curvatures are: )

For failure due to steel rupture at elongation equal to £,

ESH
bo = TEd (14)

At failure of the compression zone

(15)

i

bou =

k,,, and &, in Bq. (14) and (15} are, respectively, the com-
pression zoné depth at sieel rupture of faiture of the compres-
sion zone, both normalized to d; and €., in Hq (15) is the
éxtreme cofnpression fiber strain when the compression

zoné fails and sheds its load For unconfined concrete, €, 18
approximatel§ oqual to 0.004. Assuming a stress-strain law
for unconfingd concrete that rises parabolically up to a strain
equal to €4, (= 0002) and stays constant up to a strain of £,
(as is typically assumed in Burope for the calculation of the
resistance of ¢ross sections'?), the plane-section assumption
and equilibritis give for kg,

kyy = (16)
(W Ph PR B, (L8R 1)
(1 .6)(b'dfc’+ o sw)’L( 7 ) 7

o anfy s B, PeHR)

(1 8)(1+3Em)+ 7

Steel Tupture at elongation £ takes place prior to com-
pression zone faiture and controls the ultimate curvature if
k., from Fq. (12) is less than £5,/(8;, + €, which is trans-
lated into the following condition for the axial load ratio

EC _—- 2 r
N3 R Pl 17

p,{f, + el + 8 -e,,(1-87
1! (1-8(e,, + 8.y}

For values of N/bdf,” greater than the right-hand-side of
Eq. (17), spalling of the concrete cover will occur and the

moment of the section will drop (at least temporarily). This -

will take place with yielding of the tension steel if &£ < €,/
(B + &) which is trenslated into
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If Eq. (18) is satisfied, k_,, for use in Eq. (15)is

re

(1 —_ 6’)(.._~N_ + E&_p_LJ + (1 + 6')&."{2

kcu _ bdf'c’ f(;' Ej,:_-’ pvf . fc (19)
(1- 8’)(1 _ 58_) #2022

(if the numerator in Eq. (19) is close to ze10, p may be mul-
tiplied by £, instead of /). Otherwise, &, is the positive root
of the following equation

‘ 2
i1 Beo _ _Pvfy .(8cu_£y) 2
[ ', 20 “V e K 20)

[ Y
e, bdf) (1-8), &, |

Je

[%i*xﬁ_p‘f 'J@:O
AT Gy

IfEq. (17) is satisfied, section failure will occin at §,, = by,
according to Eq. (14) and (16). If it is not, attainment of ¢,

accoiding to Eq. (15) and (18) to (20) does not necessarily

signal failute. If the moment capacity of the confined seo-
tion, determined on the basis of the strength [z and ultimate
strain €., of confined concrete, and the dimensions b,d,d,/’
of the confined core (d, and d,” result by subtracting from d
or & the sum of the cover and half the diameter of transverse
reinforcement; b, is obtained by subtracting double this sum)
is not less than a fraction in the order of 80% of the capacity
of the full but unconfined section, most of the load will be
sustained by the confined core and failure witt altimately oc-
cur at the lower of the two curvature values givenby Eq. (14)
or.(15), applied this time for the confined core (that is, di-
mensions b, d and 4’ are replaced by b, d,, d,’; N, p, p', and
py are normalized to b.d, instead of bd; and £, , &,, are used
instead of £,', £,,,). .

‘To summasize, if Bq. (17) is satisfied, ¢y, is determined from
Eq (14) and (15). Otherwise the moment capacities of the full
but unconfined section and of the confined core after spalling
of the cover are computed and compared. If the capacity of the
confined core is less than 80% of that of the unconfined sec-
tion, ¢, is the lower of: a} the value determined from Eq. (14)
and (16); or b) the value determined from Eq. (15) and (18) to
(20) for the confined core of the section.

This calculation of ¢, was applied to the 261 tests of the
database for which measured values of $,, are available.
Three alternative confinement models were applied for this
purpose: a) that of the CEB/FIP model code 1990 (MC 90),1°
adopted also in Eurocode 8; b) the Mander model,? as sim-
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plified in Reference 11 regarding calculation of the ultimate
strain g, of confined concrete

£, =0004(= ¢, )+ 1_4esf%‘¥ 1)

cc

in which p; is the volumetric tatio of confining steel; and c)
amodel that adopts the following expression for the sirength
of confined concrete

’
<

0.5 | N\O87
£ = f;;( 143 ‘7(-~—L?p o ") ) (22)
and for €, the following modification of the Mander model

£, = 0004+ 0.6esup]j—f,£' (23)

L

Coefficient o in Eq. (22) is the confinement efficiency fac-
tor, taken herein according to Eq. (10) after References 10
and 14, :

Expetimental values of ¢, are compared with the predic-
tions of the three alternatives: a) in Table 3, through the sta-
tistics of the 1atio of experimental-to-predicted values: and
b) in Fig. 6, in graphic form. On the average, the MC90 con-
finement model underpredicts the ultimate curvature, the
Mander médel with the addition of Eq. (21) overpredicts i,
and the model of Eq. (22) and (23) provides an unbiased fit
to the data with less scatter than the others. The scatter is
partly atiributed to the effects of load cycling and of the
fixed-end rotation due to bar pullodt from the anchorage,
which are not considered explicitly in the model for curvature,

Considering that the results of the comparison: a) of the
predictions of Eq (1) to (5) with the results of the tests for
¢y; and b) of those of Eq_ (14) to (20) and (22) and (23) with
the test data for ¢,, constifite a verification on the average,

‘these sets of equations are adopted for use in Eq.(13),and an

appropriate expression is sought for Ly,;. The aim is to provide
a fit to the data on 8, from the 875 tests to which Eq. (11) ;¢
(12) were fitted.

Research over all relevant element variables revealed that
forEq (13)to apply, L, should be a function of the two vari-
ables proposed for this purpose in Reference 11: L, and the
product df,, If L, is taken as a linear function of these two
variables, tﬁe fo]fowing expressions provide the best fit to
the 875 tests for which values of 8, are available:

For cyclic loading

Ly, ey = 0121, +0.014a,,d,f, (24)

For monotonic loading

= 15L

L Pl ey

o1, mon = 0.18L + 0021a,d,f, (25)
where f), is in MPa, and a,; is the zero-one variable used in
Eq. (7) to (9), (11), and (12) for absence or presence of bar
pullout from the anchorage zone beyond the section of max-
Imum moment,

The statistics of the ratio of experimental-to-predicted val-
ue of 6, resulting from these optimal fits are listed in Table

145




0.8
e 2 ——Median (@u gr.=0 470U exp)
o e °
oo Q
Q
o} P e‘.
0%0 o e
——
E o A
= o 2 g
oat 3 A
o
§ fg @2 g o
°
=T 0o o o
o 2,
= ]
=2
=]
)
[~
’ (@
-Median [®u pr=1 56¢u J;p] o
v e oo
g ° a ,
08 ° - e
. a
o® ° .
o Q .
= -]
.__E_ a o /
= o. ® : 8 . / '
g 04 = o ° e
= -}
n; 3° Q. 0%: . o /
2 o, 8 5 o g oy}
& o[ .
. e
02 &
’ o
o
(b)
00
08 £
[
o
s ]
0® o ; B}
° TR )
06 " X
* o -] ° a®
— a
5 : : .
Soafe 5
g o iy >
o o 0 &Fo 0o o
el o o
e ®
& o;f g © oo
8o o = T
02 Frooaih—as—T :
&0 a | B 4
b ¢l &2’
% <]
é’sg.j P (c)
00 : ; ‘
0.0 G2 06 08

04
Qu,pred. (1lm)

Fig. 6—Comparisori of experimental ultimate curvatures
with predictions from Eq. (14) to (20), for confinement mod-
els according to. (a) MCo0;10 (b} Mander, Priestley, and
Park’ and Eq. (21), and (c) Eq. (10), (22), and (23).

3, Rows 8 and 9. Figure 7 compares the predictions of Eq‘.

(13) to (20)and (22) to (25) with the data to which they were
fitied. They also show the 5% fiaciile lines for the data
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Fig. 7—Comparison of éxperimental ultimate chord rota-
tions (drifis) with predictions of: (a) Egq. (13) to (20}, (22),
(23), and (25} for montotonic loading; and (b} Eq. (13) to
(20) and (22} to (24) for cyclic loading.

Compared with Fig. 3 and 4(a) to (c), the scatter in Fig. 7 is
latger. The scatter is atiributed to failure of the model Eq, (£3)
to account properly for the effects of: a) shear and inclined
cracking; and b) the type of element (wall, conventional, or
diagonally reinforced beain or column). There is also consid-
erable lack-of-fit of Eq. (13) to (20) and (22) to (25) with
somme of the variables, for which Eq (11) is unbiased. It over-
predicts 8, for cold-wozked brittle steels, and underpredicts
it for hot-rolled ductile ones; it underpredicts 6, for diago-
nally reinforced members; it overestimates the effect of con-
finemént; and it ovetpredicts the value of 6, in members with
LJh > 6 more so than Eq. (11). '

The comparison of the predictions of Eq. (13) to (20_) and
(22) to (24) with the maximum values of 0, attained in 60 cy-
clic tests that did not reach failure, is as satisfactory as the
comparison in Fig. 5.

For comparison with Eq. (13) to (20) and (22) to (24), Table
3 lists in the last row statistics of the iatio of experimental val-
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ues to those predicted using the L ; model in Reference 11,
thatis, one in which coefficients 0.12 and 0,014 in Bq. (24) are
replaced with 0.08 and 0.022, respectively. These statistics are
not much worse than those of Eq. (22) to (25), suggesting little
sensitivity of the predictions of BEq (13) to the details of the
model for ;. :

CONCLUSIONS

A Jarge database comptised of over 1000 tests of flexure-
controlled RC members in uniaxial bending with or without
axial force, was assembled and used to develap simple mod-
els for the deformations of RC members at yielding and fail-
ure (ultimate). Approximately 1/4 of these fests include
measurements of curvatures, which may be affected by any
fixed-end rotation at the member end due to reinforcement
pullout from its anchorage Despite this and the disability of
section models to capture the effects of shear or bar buckting,
stmple models for curvature based on first principles can re-
produce on the avetage well the experimental curvature at
yielding and ultimate. The scatter of the prediction of curva-
fure at yielding is acceptable, but that associated with ulti-
mate curvatures is very large

A simople model is proposed for the chord totation of the
shear span at yielding, which comprises the familiar flexural
term, a constant deformation dueé to shear and the contribu-
tion of any fixed-end rotation, proportional to the product of
the bond stress demand and the steel yield strain The scatter
of the data about this semi-empirical model is of the same or-
der as that of the curvature data about the model based on
fust principles Its application gives effective flexural igid-
ities of RC members at yielding in the order of 20% of that
of the uncracked gross section and in agreemient with previ-
ous proposals 13 for the flexural rigidity of heavily com-
pressed slender colurms, but with much less scatter with
respect to the data;

The models proposed for yield and ultimate curvature are
used to fit empirical expressions for the plastic hinge length
at member ultimate deformations (Bqs. (24) and (25)). Good
average fit is obtained with a plastic hinge length that is 50%
greater in monotonic loading than in cyclic loading. Never-
theless, the scatter with respect to the data cannot be less than
that of the model for ultimate curvature and is very high.
Moreover, for certain ranges of values of the control vari-
ables, there is systematic bias of the predictions. For these
reasons, altetnative purely empirical models are proposed
for the ultimate chord rotation. For their development, it was

found necessary to combine data for monotonic and cyclic

loading and for various types of elements (beams, columns,
walls, and diagonally reinforced elements) into a single da-
tabase, as the individual groups of elements do not include
enough data to support independent fitting of empirical
equations. The main outcome of this effort, Eq. (11), gives
Iess scatter with respect to the data and is more unbiased to
all the parameters than the alternatives based on rational me-
chanics (Eq. (13) to (20) and (22) to (25)). In this respect, it
may be considered more useful for practical applications.
Moreover, it shows more clearly the dependeiice of member
deformability en the characteristics of the member and of its
reinforcement. More specifically, according to Eq (11):

L. Steel ductility is quite important for member deform-
ability. The use of brittle cold-worked steel reduces member
deformation capacity almost by 1/2, while the replacement
of ductile steels traditionally used in seismic regions with
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modein Buropean tempcore steels reduces deformation ca-
pacity by 15 to 20% on the average;

2 Pullout of reinforcement from its anchorage zone be-
yond the member end increases deformability by apPIOXi-
mately 40% on the dverage, especially under cyclic loading;
in this respect it may be considered as beneficial;

3. Full cycling at the peak deformation demand reduces
deformation capacity by 40% on the aver age, almost regard-
less of the previous load history;

4. Among the geometric and mechanical characteristics of
the member and of its reinforcement, the shear-span ratio
seems to be the most important 1atio in ncreasing member
deformation capacity The ratio of compression-to-tension
reinforcement and concrete stength £, rank second The
amount of confining reinforcement is less important;

5. Deformation capacity decreases abmost linearly with ax-
ial load, to approximately 50% of its zero-load value at bal-
ance load; and

6. All other parameters being equal, walls have, on aver-
age, 1/3 less deformation capacity than prismatic elements.
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NOTATION

A = vatable defined.in By. (4) and (5) and used in Bq. (3)

Ag = gToss cross-sectional area of concrete member

A, = area of transverse reinforcement paraliel to direction of loading

g = zero-one variable in Hq. (7), (9), (11), and (12), expressing
effect of pullout of longitudinal bars from anchorage zone
beyond section of maximum moment

@y = Zero-one vatiable in Eq, (9), (11), and (12) for shear walls

B = variable defined in Eq. (4) and (5) and used in Eq. (3)

b = width of compression zone

b, = width of confined core of section after spalling of concrete
cover

b; = distance along cross section perimeter of successive longitudi-
nal bars laterally restrained by sticrup comer or 135 degree
hook

by, = width of web

d = effective depth of cross section

d = distance of cenfer of compression reinforcement from extreme
compression fber

dy = diameter of compression longitudine] reinforcement

d, = effective depth of confined core of section after spalling of
conerete cover

4.’ = distance of center of compression reinforcement from center
of stirmup (boundary of confined core)

E, = elastic modulus of concrete

E; = elastic modulus of steel

7 = compressive sttength of unconfined concrete based on stan-
dard cylinder test

e = compressive strength of confined concrete

A = tensile strength of steel

5 = yield strength of tension reinforcement

5 = yield strength of compression reinforcement

i = yield strength of transverse reinforcement

h = depth of member cross section

h, = depth of confined core of section after spalling of cover

K = nommalized (fo d) compression zone depth at failnre of com-
pression zone

ko = pormalized (to d} compression zone depth at rupture of fension
steel ‘

k, = normalized (fo ) compression zone depth at section ulfimate
deformation

k, = normalized (to d) compression zone depth at section vielding

Ly = plastic hinge lepgth

Litey = valueof Ly under cyclic loadingf Eq (29
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value of Ly under monotonic loading, Bq (25)

shear span of member (= M/V)

yield moment of cross section

axial force positive for compression

EJE, = ratio of moduli

equivalent number of inelastic half-cycles of loading at deflec-
tions equal to maximum deflection during test

spacing of transverse reinforcement

shear force

cenfinement effectiveness factor, given by Eq. (10)

coefficient in Eq. (8) expressing effect of cycling of loading on

o
coefficient in Eq. (11) expressing effect of steel type on 8,
coefficient in Eq. {9) expressing effect of steel type on 8, in
cyclic loading -

coefficient in Eq. (8) expressing effect of steel type on 8, in

morotonic loadmg

coefficient in Eq. (12) expressing effect of steel type on 8,
accounting for member of cycles

d'ld

strain at extreme compression fiber beyond which yielding of

cross section due to concrete nonlineaxity can be identified
strain where confined concrete is considered to fail in com-
pression

strain at peak of concrete stress-strain diagram (-0.002)

strain where unconfined concrete is considered to fail in com-
pression

ultimate elorigation of steel

steel yield strain = f/E;

section curvature .

section curvatuie at ultimate failure of compression zone
section curvature at fracture of teasion reinforcement

ultirnate section curvature (at faiture)

section curvature at yielding

NIA f,” = normatized axial load ratio

drift ratio or chord rotation of shear span

plastic rotation

value of 6 at membex failure (ultimate value)

value of 8 at member yielding

tension reinforcement ratio determined as ratio of tension
reinforcement area to bd

compression reinforcement ratio determined as ratio of com-
pression reinforcement area to bd

diagonal reinforcement ratio in diagonally reinforced mem-
bers, determined as ratio of area of reinforcement arranged
along one diagonal to bd '
confinement reinforcement ratio in direction of loading detex-

mined as ratio of area A, of transverse reinforcement in com-
pression zone pazallel to direction of loading to bsy,

web vertical reinforcement ratio of shear wall determined as
ratio of total web area of longitudinal reinforcement between
tension and compression steel to bd
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