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ABSTRACT

Many of the non-linear static methods for seisngsegssment of buildings according to
modern structural codes are based on the well-knb&nprocedure. A more intuitive
pushover procedure, N1, has recently been propdtsethain advantage is that the explicit
evaluation of an equivalent SDOF system is notirequThe N1 method has been proved
to provide the same accuracy as N2, but only whiatedal load distribution proportional
to the first mode shape is involved. After a braescription of the main differences
between the two methods, an improved version, theddrected method, is presented here.
It is more consistent with N2, also when constardeteration lateral load patterns are
applied. The N1 corrected method is validated afiogrto an extensive parametric
investigation of a set of case studies on steel R#@l frames, with regular and irregular
mass distribution in height.
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1. INTRODUCTION

Of the several non-linear static methods in threxditure, the ‘capacity spectrum method
CSM’[1] and the ‘N2 method’ [2-4] have achieved gimg consensus, so that their use is
currently prescribed by various seismic co@asocode 8 (EC8) [5] in the EU, ATC 40 [6]
and FEMA 440 [7] in the US; DM2008 in Italy [8])nd they are commonly applied by
many experts in seismic engineering. Difference®ragnthese methods are due to the
simplifications that national standards bodies haeeepted in order to make their
application more straightforward.

It is well-known that the N2 method cannot be agblio the study of irregular buildings
(e.g., torsionally flexible plan-asymmetric and Hrgse buildings). Modified modal
pushover analysis (MMPA), practical modal pushosealysis (PMPA) and N2-extended
methods have thus recently been proposed. Theyrabneombine the results of basic
pushover analysis (e.g., N2) with those of standdastic modal analysis, to take into
account the influence of higher modes, in both plad elevation [13-17].

In practice, N2 is still mainly used and more acexthmethods are not yet contemplated
by seismic codes, so that further study and imprmre of N2 are needed.

Seismic codes normally impose the use of at least distributions of forces to
determine performance curves: one is related tditstemode of vibration and the second
uses a force distribution proportional to the flooasses. The envelope of results is then
examined.

All the non-linear static methods in the seismide® present some aspects which
require improvement. However, the need to definegunvalent single degree-of-freedom
(SDOF) system, required by all methods which im@etrN2 in its original version, makes
their application rather complex.

To simplify the procedure as much as possible,naintaining it consistent with N2,
Boscoet al.[9] proposed an alternative non-linear static pore, called ‘N1 method’, for
seismic assessment of structures. This methodhHeasame theoretical background, but
does not require explicit reference to the equiva8DOF system. The abbreviation ‘N1’
emphasises the fact that the method is non-lindarafd solves only ‘1’ model of the
structure, i.e., the multi degree-of-freedom (MDORQdel. It evaluates the displacement
demand directly as the value provided by a standdadtic modal response spectrum
analysis — RSA [10], modified to take into accouhé non-linear behaviour of the
structure.

Conceptually, this method adopts the approach 8i&AB68 [11] and FEMA 369 [12],
but introduces improvements which take into accdhatreduction in stiffness (and thus
the increase in the period). In the classical fdation of the N2 method, this is obtained
by bi-linearisation of the capacity curve.

One important advantage of N1 is that, with [IN&BA, peak ground acceleration
(PGA) values can be directly correlated with displaentD. of a control point, normally
assumed as the mass centre of the top floor dbukiding. A further (non-linear) scale for
PGA to the classical relationship base-shear foficgersus top displacemei), can be
added. This makes N1 more suitable within the modeisplacement-Based Seismic
Design approach of structures [9].

The next sections provide a short summary of tatesif-the-art of the implementation
of pushover methods in seismic codes, primarilyu$irtg on the N2 and N1 methods. A



similar discussion is also made by Bostal [9]. However, it is useful to mention briefly
the symbols and equations used here.

2. BRIEF DESCRIPTION OF NON-LINEAR STATIC METHODS

In spite of certain fundamental differences, al4tinear static methods are organised in
two fundamental steps:

a) Determination of the performance curve of the stiee The performance curver
capacity curveof the structure, represented in terms of theicglahip base-shear forsg
versus control point displacemeg, is evaluated by monotonically increasing horiabnt
forces applied to the j-th floor of the structupaighover analysis) until a given limit state is
reached (e.g., collapse of the structure). Theibligion of horizontal forces in the analysis
is obtained by multiplying floor masses, (j=1:n) by a displacement profile:

- 1
F=mg @
Subscript i refers to quantities dependent on {tredisplacement profileg adopted.

Hereafter, subscript i is substituted by 1, wheorae distribution proportional to the first
mode shape is involved, and by the letter u, whemiéorm’ load distribution proportional
to the floor masses (i.e., constant acceleratistridution) is applied.

Vibration periodT, of an elastic MDOF system corresponding to moa@gpsly, is:

T =27 / m )
Kt,i

where stiffnessK, ;, the ratio of base shear over top displacemerntbiained by a set of

forces F; proportional tog and m given by:
M4 (3)
m = _
%,

It can be demonstrated [9] that mags is related to modal madd ', corresponding to
the mode shape by:

o MO (4)
m ¢?n I_i

whereT is the modal participation factor:

r=-* >1 ®)



b) Determination of the displacement demand for a @iR&GA. Each point of the
capacity curve must be related to a value of P@Ayrder to estimate the inelastic response
of the structure under examination. This means ithe&t necessary to evaluate the top
displacement of the actual MDOF system correspantiina seismic input with a given
PGA, i.e., the displacement demand Rerformance Pointby means of study of an
equivalent SDOF, representative of the MDOF system.

The N2 method employs an inelastic system repredeny an elastic-perfectly plastic
bi-linear relationship, obtained from the real aapacurve by imposing equal energy
principles. It is characterised by lateral stren@tf), and yield displacemenbD, ;. The

slope of the elastic brancK,; =V, /D,

by.i | Deyi» 1S here called ‘secant stiffness’.

The equivalent SDOF system has a massnpf (Equation (3)) and its response
parameters (forceF’, displacementD;i) may be obtained from the corresponding

parameters of the MDOF system (base shgay top displacemenD_ ;) by the following
equations:

£ = Vo, (6a)
I Wn ri
Dy (60)
“ Wnri

These equations, although strictly valid onlygf is a modal displacement profile, as
they are not very sensitive to moderate changeg jrare used to transform the capacity
curve of the MDOF system to that of a correspon@BF system, even wheg is not a

modal profile [9].
The period of the idealised SDOF system is thus:

T =21 i (7)
I Ks,i
in which:
K - Fy’i =K. . = be‘i (8)
Dcy,i ’ DCyl

since displacements and forces have the same obrdtaransformationg,l’;, i.e., the

SDOF and real MDOF systems have the same glolfifaless.
In the real MDOF structure, the base shear due ddainforces corresponding to the
modal displacemeny is:

\ . 9
Voeri =M @IS, (T)) =M, S,,(T) ©)

and the corresponding displacement at the top flor



Do = @l Sua(T) (10)

where S, is pseudo-spectral acceleration &g is spectral displacement.

In the N2 method, determination of the seismic oesp of the SDOF system is very
easy when its period is longer than transition queff., which separates the constant

acceleration branch of the spectrum from the comst&locity branch. In this case,
displacement deman(ﬂ);i of the inelastic system is equal to the displacendd the

corresponding elastic structunghich may be obtained as spectral vaﬁ;ugl(Ti*). When
period Ti* is shorter thanT., displacementD,; is evaluated by amplifying spectral

displacementSdel(Ti* )by a coefficient depending on force reduction dacqi* (ratio of
elastic strength demand to yielding strength dfri®ar system), according to [4]:

D, =S (T)...if . 2T....or..q <1 (11a)
D, = del(l'i*)i*[1+(qi* —1)%}...” .. T <T....and...q >1 (11b)
G i
where:
q* - Sael (Ti**)m* (12)

F

Y

*
i

Spectral displacemens,(T') may be calculated by pseudo-accelerati®p (T

Lastly, the displacement demand of the SDOF systermansformed back to the top
displacement demand of the MDOF system by the gevef Equation (6b):

Dc,i = Wn I_i Dc,i*

)

(13)

The seismic response of the MDOF system, in teffm#t@rnal forces in members, floor
displacement, plastic deformations, etc., is thesumed as that obtained by pushover
analysis at top displacemeD; . If a response quantity attains its maximum vdduea top

displacement smaller tha,; , such a maximum must be assumed. The capacityabile
and fragile failure mechanisms must then be checked

3. THE N1 METHOD

Readers are referred to the work by Bostal. [9] for an exhaustive explanation of the
N1 method. Its operative approach is summariseddriollowing steps:

a) Determination of the non-linear behaviour of tleal structure.As usual in all non-
linear static methods, base shégr versus top displacemerid,; (subscript i indicates
adopted force distribution) is determined by pusmoanalysis of the structure, by

monotonically increasing horizontal forces untillapse. According to modern seismic
codes, the analysis must be performed for at teasforce distributions.



b) Idealisation of the capacity curve with a bilmeelationship.The capacity curve of
the real structure is idealised within the relevearige of displacements by a bi-linear
relationship characterised by a yielding point widteral strengthV, ; and yield
displacementD, ;. Any of the various equivalence conditions in literature or codes can

be adopted.

c) Determination of the displacement demand cowadmg to a given PGA.

cl) Determination of the elastic response of theuctire. Maximum elastic
displacementD,, of the top floor, due to a seismic event with a&egi PGA value, is

evaluated by modal response spectrum analysisidssimgy the dominant vibrational mode
(usually the first) or combining the contributionisthe most significant modes of vibration.
c2) Correction of the elastic response of the #finec Displacement demanD,; is

obtained by correcting elastic displacemént, in order to take into account the difference

between inelastic and elastic behaviour. Accordmthe bi-linear relationship determined
at pointb), effective periodT,; of the inelastic structure is given by:

Te,i :lef% (14)

To evaluate inelastic displacemeny;, elastic displacemerd,, is multiplied by the ratio
between the spectral displacement correspondingTl to and that corresponding to
fundamental period;. A suitable correction must be assumed for strestwith T, shorter
than T, , depending on coefficienR,;, i.e., the ratio between elastic strength demépd
(obtained from elastic spectral analysis) and tieéding strength of structurs, ;. The
following equations are therefore obtained:

Seer (Te,
L=p, el G 1 osTorR, <1 (15a)
Sdel (Tl)
Seel(Te;
L=p,2elle) 1y g e | i T <T...and..R, >1 (15b)
Sdel(Tl) Rp,i Te,i
in which reduction factoR; is calculated as follows:
Sael Te,i)
- > SaeI(Tl) (16)

R, = Y,

by,i



4. COMPARISON OF N1 AND N2 METHODS

An ample parametric investigation was carried oot validate the N1 method,
considering a set of 10 steel frames and 12 R/@dsawith rigid connections, designed
with regular and irregular mass distribution indigi This enables us to compare the
results from the two methods and to propose anatiperapproach to correct N1 in order
to obtain the same results given by N2, even whéarae distribution proportional to the
floor masses is applied.

The set of frames covers a wide range of the stralcparameters which influence their
seismic responses and estimation by non-lineac stathods. The fundamental period of
the frames is in the range 0.40-2.40s, thus inolydases in which both equal displacement
and equal energy rules must be taken into account.

4.1. Characteristics of analysed frames

All the analysed frames were designed accordirtgeanethod of Ghersit al.[18] and
Marino et al.[19]. This method allows the frames to achievdapde by means of a global
mechanism, in accordance with the capacity desigari@a of modern seismic codes for
frame structures (i.e., flexural strength of colsngreater than that of converging beams,
so that plastic hinges form in the latter, and shear-over strength of members exceeds
flexural strength). The frames were characterisegdsious span lengths (from 4.0 to 5.5
m), inter-storey heights (from 3.0 to 3.5 m), numbespans (1, 2, 3, 5 and 6), number of
storeys (2, 3, 4 or 6), sizes of steel and R/G@estand extent of gravity loads in seismic
combination. The irregularity in elevation of sorframes was introduced by varying
gravity loads on the floors.

The steel frames were designed with HEB180 and HiBRBxofiles (wide-flange shapes
available in Europe) for columns, and IPE140 anH1®0 profiles for beams, made of
S355 grade steel (characteristic yielding strégs=355 MPa, elastic modulug =210

GPa). The main geometric characteristics are ligstefable 1 and shown in Fig. 1 (see
footnotes to tables for names assigned to frames).

Table 1. Geometries and design loads of steel fsame

Span length Inter-storey height Gravity loads in seismic combination
STEEL FRAMES: [m] [m] [KN/m]
1 S3x4_ R 4 3 Ro=8; F=11,5
2_S5x2_R 4 3 Ro=11,5; F=11,5
3 _S5x4 | v4/5 v3,5/3 Ro=10; F=v5/20
4 S5x4 | v4/5 v3,5/3 Ro=4; F=v2/8
5 S5x4 R v4/5 3 Ro=3; F=4
6_S1x3_R 4 3 Ro =8; F=10
7_S1x3 | 4 3 Ro=20; F=v5/10
8 S1x4 R 55 3 Ro=8; F=10
9 S3x4 R 4 3 Ro=25; F=28
10_S5x4 R v4/5 3 Ro=4; F=5,5

Sixj, i=n. of spans, j=n. of storeys, R=Regulatyiegular, Ro=Roof, F=Floors, v=variable.

Several geometries of R/C frames were examinedcddutmns and beam sizes and their
steel reinforcements were unchanged. All the cokutmd a rectangular section of 400 x



300mm and were reinforced with 10#16 longitudinatsh all beams had a rectangular
section of 300 (height) x 200mm (width) and werenfierced with 3#20 longitudinal
bottom bars and 4#20 longitudinal top bars (Fig.T2)e materials were C35/45 concrete
(f, =35 MPa, E =30 GPa) and steel grade B450(£yk(=450 MPa, E =210 GPa). The

main geometric characteristics of the frames aogvshin Table 2 and Fig. 3.

Table 2. Geometries and design loads of R/C frames.

Span length Inter-storey height  Gravity loads in seismic combination
R/C FRAMES: [m] [m] [kN/m]
11 RC1x3_R 55 3 Ro=28;F=30
12 RC1x3_R 55 3 Ro =14;F =15
13 RC6x3_R 55 3 Ro =28;F =30
14 RC6x3_R 55 3 Ro =14;F =15
15 RC5/2x4 | 55 v3,5/3 Ro =10;F =v10/30
16_RC3x3_R 55 3 Ro =28;F =30
17 _RC3x3_R 55 3 Ro =14;F =15
18 RC3x3_| 55 3 Ro =20;F =v10/40
19 RC3x3_| 5,5 3 Ro =10;F =v5/20
20_RC2x6_R 55 3 Ro =14;F =15
21 RC2x6_| 5,5 3 Ro =10;F =v20/50
22 RC3x3_| 5,5 3 Ro =7;F =v4/10

RCixj, i=n. of spans, j=n. of storeys. R=Regulaiyiegular, Ro=Roof, F=Floors, v=variable.
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Fig. 1. Geometries and design loads of steel frames
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Fig. 3. Geometries and design loads of R/C frames.

4.2. Validation of N1 method

The top displacement demanefformance Pointof the frames was determined by
applying both N2 (EC8) and N1 methods and compatiegesults. According to common
practice, pushover analyses involve two distrimgiof horizontal forces, one proportional
to the first mode shapenfodal pushover’i=1) and one proportional to the floor masses
(‘uniform pushover’i=u).

The seismic action considered in all analyses wasacterised by the elastic response
acceleration and displacement spectra of EC8, showig. 4 (soil class D, topographic
class T1, reference return period of 475 years, P@A39g). The same figure also shows
the range of periods for the frames.
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Fig. 4. Elastic response spectra according to EC8.

Non-linear analysis of frames was carried out wMidasGen rel. 7.4.1 structural
software [20]. A fibre approach was adopted [21t»djeproduce the non-linear behaviour
of members, thus keeping account of the M-N int#acin evaluating the structural
response.

The capacity curves to estimate tRerformance Pointwith both non-linear static
methods were determined for each frame and lateed distribution with the same
mathematical model, to ensure good comparabilitesiilts.

4.2.1. Modal pushover analysis
‘Modal pushoveranalyses (i=1) were first carried out on all franapplying a force
distribution proportional to the first mode shag@p displacementD,, (Performance

Point) of the frames was determined with both N2 (EG®) N1 methods with the same bi-
linearisation curve criterion. The results are cameg in Fig. 5: those obtained with N2 are
assumed as reference values (X-axis) and thoseNtitare shown on the Y-axis. All the
values clearly lie almost exactly on the bisedious demonstrating that, for the considered
load profile, both methods give the same resultsbfath regular and irregular frames,
independently of theill; period.



0,7

[ , 2[}% +10%
S al
05 | ;2 e,
[ £30% . - g -10%
¢ ¢ ,'I o _’f -
I ran / o -20%
05 A SR L L
' u " 30%

]
S
T
4 '\-\ t 5 a

D, (N1) [m]
n

02

@ R/C Frames

B Steel Frames

0 0,1 032 0,3 0,4 0,5 0,6 07

D,; (N2-EC8) [m]
Fig. 5. Comparison between top displacement demaetdsmined with N1 and N2, with modal lateral
force distribution.

These results confirm those of Bossoal. [9] according to their analyses of 108 steel
frames. The equivalence of the two methods in tleelahpushover case can easily be

explained by considering that perid’d of the equivalent SDOF system of N2 coincides
perfectly with periodT,, of N1, provided that the same bi-linearisatiortecion for the
capacity curve is used.

4.2.2. Uniform pushover analysis

‘Uniform pushoveranalyses (i=u) were then carried out on all fragslying lateral
force distribution proportional to the floor massé&ke result of lateral forces being lower
than in the modal pushover case, the frames shetviéer behaviour and therefore had
smaller values oD, .

The displacement demands obtained with the two oadstlare compared in Fig. 6 and
Tables 3 and 4.
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Table 3. Comparison between N2 (EC8) and N1 fa stames: ‘uniform pushover’ analysis.

T T, Teu  Deu(N2-EC8) D, (N1) Err
STEEL FRAMES: [s] [s] [s] [m] [m] [%]
1 S3x4_R 1,29 1,70 1,32 0,284 0,293 3,2
2 S5x2 R 1,07 1,57 1,31 0,261 0,264 1,3
3_S5x4 | 2,25 3,31 2,41 0,439 0,545 24,1
4 _S5x4 | 1,46 2,11 1,54 0,351 0,347 -1,1
5 S5x4 R 1,53 1,95 1,54 0,325 0,339 4,4
6_S1x3_R 0,83 1,04 0,81 0,174 0,177 1,6
7_S1x3_| 1,09 1,36 1,15 0,228 0,217 -4,8
8_S1x4 R 2,40 4,15 3,14 0,441 0,594 34,8
9 S3x4 R 2,10 3,55 2,78 0,441 0,573 29,7
10_S5x4_| 1,77 2,37 1,87 0,394 0,414 5,0

Table 4. Comparison between N2 (EC8) and N1 for flRd@es: ‘uniform pushover’ analysis.

*

T, T, T,, D.,(N2-EC8) D, (N1) Err
R/C FRAMES: Is] [s] Is] [m] [m] [%]
11_RC1x3 R 070 1,12 0,87 0,187 0,191 1,7
12_RC1x3 R 052 082 0,64 0,137 0,121 11,2
13_RC6x3_R 077 1,16 0,92 0,194 0,199 2,7
14_RC6x3_R 057 085 0,67 0,143 0,135 5,6
15_RC5/2x4 _| 067 1,09 0,75 0,183 0,198 8,3
16_RC3x3_R 0,76 1,18 0,94 0,197 0,202 2,6
17_RC3x3_R 056 086 0,68 0,144 0,137 -4,9
18_RC3x3_| 061 1,01 0,73 0,167 0,165 1,3
19 _RC3x3_| 046 0,74 0,54 0,123 0,091 -26,1
20_RC2x6_R 1,26 1,80 1,42 0,299 0,306 2,4
21_RC2x6_| 1,38 201 1,59 0,334 0,335 0,2
22 RC3x3_| 040 0,63 0,48 0,089 0,068 -23,3

In the case ofuniform pushoveranalysis, when a constant force distributiongplaed, N1
and N2 yield quite different displacement demands.
Matching the studies of Bos@ al.[9], Fig. 7 shows that, for structures with pesad

betweenT. and T, the differences between the two methods are gibtgi whereas for

structures with longer periods, N1 overestimatesdisplacement demand with respect to
N2 by as much as +30%. In contrast, for structwébl periods shorter thai., N1

underestimates displacement by up to -30%.
Note that, in the case otiniform pushovéranalysis, Tu* does not coincide with its

respectiveT,,, but the two differ by a factar estimated as follows:
T, =T AT aT, (17)
eu 1 K u

in which:



Tu* =277 —rnl* =2/T l (18)
V Ks,u V Ks,u
= ’ﬂ<1 (29)
M

In deriving Equation (18), when uniform force distition is applied,nL* is equal tav,
the total mass of the real structure and the mpaldicipation factorl, is 1.

As already reported by Boseai al. [9], the differences between the methods (Figs. 6
and 7; Tables 3 and 4) are due to the followingremting effects:

-N1 refers to massn , but N2 uses mass), =M >m, thus providing periodr,’
and spectral displacemes,,(T,") which are always larger than that obtained

with N1,
-the displacement demand is proportional to faggor,, which is 1 in N2 and

@, >1in N1;
-R,, differs from g, ; consequently, for structures with period§u<Tu*, the

coefficients of displacement correction for equargy rules change;
These contrasting effects are compensated as thoal e the structure varies. That is,

for a structure with periods,, and T, betweenT. and T,, the difference between the
displacement demands of N2 and N1 is generallylssiate the spectral displacement is
linearly proportional to the period and theref@e, (T, 1S)(Te.) DTU*/Te’u>1. However,
this effect is almost completely compensated, siggg, =1<¢,, and D, (N2-EC8)
from Equation (13) is almost equal @, (N1) (Equation (15a)). For structures with long
periods, i.e., belonging to the constant displacgnmanch of the response spectrum,
elongation of periodl’u* with respect tol,, and T, does not produce any increase in the
displacement demand. However, the difference betwgg , and ¢, increases the
displacement demand evaluated by N1 with respeld®tar his difference is greater if both
T,, and T, are longer thafT,, and decreases only T}, is longer thari, . For structures
with periods shorter thaf., the opposite result is obtained. In this range, gpectral
displacement is proportional to the square of teeod and the effects of the difference
betweenm,” and m’, which makesS,,(T,") larger thanS,, (T,, ) prevails over those of

the difference betweem, I, and g, I',. This difference is greater if boff,, and T, are
shorter thanl, and decreases onlyTi, is shorter tha.. For these frames, further small

differences between the displacement demand awse the fact that different values of
force reduction factor®k , , (Equation (16)) ancdqu* (Equation (12)) are obtained.



4.3. Conclusions: assessment of reliability of N1
Tests on a sample of 22 two-dimensional framesvaitbthe following conclusions to
be drawn:

- in all the studied frames, N1 as formulated by Basical. [9] and N2 yield the
same displacement demand when a force distributioresponding to the first
mode shape is appliedrfodal pushovéranalysis). This evidence, which can be
theoretically proved only for regular frames donéthby main mode shape [9],
was also confirmed for irregular frames;

- N1 and N2 provide clear-cut differences for shartd long-period frames when
a force distribution proportional to the floor masss used (¢niform pushover’
analysis). These differences are highlighted in phevious section and it is
therefore necessary to introduce the appropriateections to make N1
consistent with N2.

5. PROPOSAL FOR AN N1 CORRECTED METHOD

According to the above results, an improved versioN1 is now proposed with the aim
of obtaining results consistent with N2 even inthse of tniform pushovéranalysis.

As already discussed in section 4, when a forctildigion proportional to the floor
masses is applied, the effective peribg of N1 is always shorter than the respective

period of the idealised SDOF system* of N2 by a factora (see Equation (19)).
According to Equation (4) and by means of easyualions, it can be demonstrated that:

(20)

s Sl v }j

) a4l arn Z{Q}T[M ]{r} i=2 %r

where I, are the modal participation factors of the higinendes already defined in
Equation (5), anc{r} is the influence vector for seismic excitation.

It is easy to verify that, if eigenvecto{w} are normalised with respect to mass matrix
[M], the expression of coefficiefft can be reduced to:

S ] 1 @)

p= (%r o=

where 8 C1 in structures where the first mode shape is domjriaut it is also close to 1 in
irregular frames, as Table 5 shows.



Table 5. Values of coefficientg and S for frames.

sTEELFRAMES: [l Bl RricrFramves: Al Bl
1 S3x4 R 0,77 104 11 RCIx3R 0,78 1,01
2 S5x2 R 0,84 101 12 RC1x3 R 0,78 1,02
3 SBx4_| 0,73 0,99 13 RC6x3 R 0,79 1,02
4_SB5x4_| 0,73 0,99 14 RC6x3 R 0,79 1,02
5_S5x4 R 0,79 1,05 15 RC5/2x4 | 0,69 1,09
6_S1x3 R 0,78 1,03 16 _RC3x3_R 0,79 1,02
7 S1x3_| 0,84 0,96 17 RC3x3 R 0,79 1,02
8 Six4 R 0,76 1,02 18 RC3x3_| 0,73 0,99
9 S3x4 R 0,78 1,02 19 RC3x3_| 0,73 1,00
10_S5x4._| 0,79 1,05 20 RC2x6_R 0,79 1,03
21 _RC2x6_| 0,79 1,00
22 RC3x3_| 0,76 1,00

Equation (20) estimates the differences betweetwbenethods.

Since coefficienta (Equation (20)) can easily be evaluated by moegpponse spectrum
analysis, bypassing the definition of the SDOF eystEquations (14) and (16) can be
corrected and Equation (15a) reformulated if thibofang form is used in udniform
pushoveranalyses:

TeuCOI' :l-l-eu (22)
, a ©
SaeI (Teucor)
o 23
R cor M > SaeI(Tl) ( )
# M, Voyu
clearly:
M _ 1 (24)
P r Y
Ml ¢?Ln 1ﬁ2
giving:

“T @ S (25a)



S (T cor
c,ucor = Del del( - ) 1cor 1+ (Rll,ucor _1) T(i:or
Qn r1 Sdel (Tl) Ry,u T

eu

(25b)

if .. T, <T....and...R,” >1

€,

Fig. 8 compares the top displacement demands fidorom lateral load distribution
obtained with the proposedil corrected methodith those of the N2 (EC8) method.

0.5 .
I ' 'b%;xf: _
- ags F10%S T
04 | caple -/ -10% .~
| . ‘ '. ) l_2[j%_..’
: R gt
03 | S s ’
L o
o L P Sy
— =
Z I
ol o Pl
|
a |
= ® R/C Frames
I m Steel Frames
D i i i 1 i i i i 1 i i i i 1 i i i i 1 i i i i
o 0,1 0,2 03 04 0.5

D, (N2-ECS8) [m]

Fig. 8. Comparison between top displacement demaitdsuniform lateral load distribution with N1
corrected and N2.

Clearly, with this proposal, the results from th& bbrrected and N2 (EC8) methods
also coincide when a force distribution proportiotathe floor masses is used, for all
regular and irregular frames. In its corrected fatnN1 can be applied in the same
compliance conditions as N2, i.e., in plan-regblaitdings with dominating first mode, for
which g C1.

6. SUMMARY AND CONCLUSIONS

Boscoet al[9] proposed the N1 method as an alternative tonbleknown N2 method
to assess the seismic response of existing andstraetures by non-linear static analysis.
N1 has the merit of being simpler in practical &milon, because it does not require
definition of the equivalent SDOF system as anriegliate step.



The two methods provide the same results in the camodal patterns of lateral forces,
but they lead to different displacement demandsiiart- and long-period structures in the
case of uniform patterns. These discrepancies weatysed allowing us to extend and
improve N1. In the present work, the N1 correctexthud is presented and validated with
reference to a set of 22 steel and R/C frames, n@ghlar and irregular mass distribution in
height. This analytical correction was facilitatedintroducing coefficienty , calculated in
closed form from the results of modal analysis.thNis becomes equivalent to N2 and can
be used for practical applications in the same itimms (i.e., in plan-regular buildings with
dominating first mode). Like N2, N1 can also beeexted to study of irregular or high-rise
buildings in which the influence of higher modes fioth plan and elevation) can be
evaluated by standard elastic modal response spe@nalysis. Further in-depth study of
the N1 corrected method is needed and should bethe of future research.
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