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ABSTRACT 
 

Many of the non-linear static methods for seismic assessment of buildings according to 
modern structural codes are based on the well-known N2 procedure. A more intuitive 
pushover procedure, N1, has recently been proposed. Its main advantage is that the explicit 
evaluation of an equivalent SDOF system is not required. The N1 method has been proved 
to provide the same accuracy as N2, but only when a lateral load distribution proportional 
to the first mode shape is involved. After a brief description of the main differences 
between the two methods, an improved version, the N1 corrected method, is presented here. 
It is more consistent with N2, also when constant acceleration lateral load patterns are 
applied. The N1 corrected method is validated according to an extensive parametric 
investigation of a set of case studies on steel and R/C frames, with regular and irregular 
mass distribution in height. 
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1. INTRODUCTION 
 

Of the several non-linear static methods in the literature, the ‘capacity spectrum method 
CSM’[1] and the ‘N2 method’ [2-4] have achieved growing consensus, so that their use is 
currently prescribed by various seismic codes (Eurocode 8 (EC8) [5] in the EU, ATC 40 [6] 
and FEMA 440 [7] in the US; DM2008 in Italy [8]), and they are commonly applied by 
many experts in seismic engineering. Differences among these methods are due to the 
simplifications that national standards bodies have accepted in order to make their 
application more straightforward. 

It is well-known that the N2 method cannot be applied to the study of irregular buildings 
(e.g., torsionally flexible plan-asymmetric and high-rise buildings). Modified modal 
pushover analysis (MMPA), practical modal pushover analysis (PMPA) and N2-extended 
methods have thus recently been proposed. They generally combine the results of basic 
pushover analysis (e.g., N2) with those of standard elastic modal analysis, to take into 
account the influence of higher modes, in both plan and elevation [13-17]. 

In practice, N2 is still mainly used and more advanced methods are not yet contemplated 
by seismic codes, so that further study and improvement of N2 are needed. 

Seismic codes normally impose the use of at least two distributions of forces to 
determine performance curves: one is related to the first mode of vibration and the second 
uses a force distribution proportional to the floor masses. The envelope of results is then 
examined. 

All the non-linear static methods in the seismic codes present some aspects which 
require improvement. However, the need to define an equivalent single degree-of-freedom 
(SDOF) system, required by all methods which implement N2 in its original version, makes 
their application rather complex. 

To simplify the procedure as much as possible, but maintaining it consistent with N2, 
Bosco et al. [9] proposed an alternative non-linear static procedure, called ‘N1 method’, for 
seismic assessment of structures. This method has the same theoretical background, but 
does not require explicit reference to the equivalent SDOF system. The abbreviation ‘N1’ 
emphasises the fact that the method is non-linear (N) and solves only ‘1’ model of the 
structure, i.e., the multi degree-of-freedom (MDOF) model. It evaluates the displacement 
demand directly as the value provided by a standard elastic modal response spectrum 
analysis – RSA [10], modified to take into account the non-linear behaviour of the 
structure. 

Conceptually, this method adopts the approach of FEMA 368 [11] and FEMA 369 [12], 
but introduces improvements which take into account the reduction in stiffness (and thus 
the increase in the period). In the classical formulation of the N2 method, this is obtained 
by bi-linearisation of the capacity curve. 

One important advantage of N1 is that, with linear RSA, peak ground acceleration 
(PGA) values can be directly correlated with displacement Dc of a control point, normally 
assumed as the mass centre of the top floor of the building. A further (non-linear) scale for 
PGA to the classical relationship base-shear force Vb versus top displacement Dc can be 
added. This makes N1 more suitable within the modern Displacement-Based Seismic 
Design approach of structures [9]. 

The next sections provide a short summary of the state-of-the-art of the implementation 
of pushover methods in seismic codes, primarily focusing on the N2 and N1 methods. A 



similar discussion is also made by Bosco et al. [9]. However, it is useful to mention briefly 
the symbols and equations used here. 

 
 

2. BRIEF DESCRIPTION OF NON-LINEAR STATIC METHODS 
 
In spite of certain fundamental differences, all non-linear static methods are organised in 

two fundamental steps: 
a) Determination of the performance curve of the structure. The performance curve or 

capacity curve of the structure, represented in terms of the relationship base-shear force Vb 
versus control point displacement Dc, is evaluated by monotonically increasing horizontal 
forces applied to the j-th floor of the structure (pushover analysis) until a given limit state is 
reached (e.g., collapse of the structure). The distribution of horizontal forces in the analysis 
is obtained by multiplying floor masses jm  (j=1:n) by a displacement profile: 

ijjij mF φ=  (1) 
 

Subscript i refers to quantities dependent on the i-th displacement profile ijφ  adopted. 

Hereafter, subscript i is substituted by 1, when a force distribution proportional to the first 
mode shape is involved, and by the letter u, when a ‘uniform’ load distribution proportional 
to the floor masses (i.e., constant acceleration distribution) is applied. 

Vibration period iT  of an elastic MDOF system corresponding to mode shape ijφ  is: 
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where stiffness itK , , the ratio of base shear over top displacement, is obtained by a set of 

forces ijF  proportional to ijφ  and *
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It can be demonstrated [9] that mass *
im  is related to modal mass *

iM , corresponding to 

the mode shape by: 
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where iΓ  is the modal participation factor: 
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b) Determination of the displacement demand for a given PGA. Each point of the 
capacity curve must be related to a value of PGA, in order to estimate the inelastic response 
of the structure under examination. This means that it is necessary to evaluate the top 
displacement of the actual MDOF system corresponding to a seismic input with a given 
PGA, i.e., the displacement demand or Performance Point, by means of study of an 
equivalent SDOF, representative of the MDOF system. 

The N2 method employs an inelastic system represented by an elastic-perfectly plastic 
bi-linear relationship, obtained from the real capacity curve by imposing equal energy 
principles. It is characterised by lateral strength ibyV ,  and yield displacement icyD , . The 

slope of the elastic branch, isK , = ibyV , / icyD , , is here called ‘secant stiffness’. 

The equivalent SDOF system has a mass of *
im  (Equation (3)) and its response 

parameters (force *
iF , displacement *

,icD ) may be obtained from the corresponding 

parameters of the MDOF system (base shear ibV , , top displacement icD , ) by the following 

equations: 
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These equations, although strictly valid only if ijφ  is a modal displacement profile, as 

they are not very sensitive to moderate changes in ijφ , are used to transform the capacity 

curve of the MDOF system to that of a corresponding SDOF system, even when ijφ  is not a 

modal profile [9]. 
The period of the idealised SDOF system is thus: 
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since displacements and forces have the same constant of transformation iinΓφ , i.e., the 

SDOF and real MDOF systems have the same global stiffness. 
In the real MDOF structure, the base shear due to modal forces corresponding to the 

modal displacement ijφ  is: 

)()( **
, iaeliiaeliiniibel TSMTSmV =Γ= φ  (9) 

 
and the corresponding displacement at the top floor is: 



)(, ideliiniel TSD Γ= φ  (10) 
 

where aelS  is pseudo-spectral acceleration and delS  is spectral displacement. 

In the N2 method, determination of the seismic response of the SDOF system is very 
easy when its period is longer than transition period CT , which separates the constant 

acceleration branch of the spectrum from the constant velocity branch. In this case, 
displacement demand *

,icD  of the inelastic system is equal to the displacement of the 

corresponding elastic structure, which may be obtained as spectral value )( *
idel TS . When 

period *
iT  is shorter than CT , displacement *

,icD  is evaluated by amplifying spectral 

displacement )( *
idel TS  by a coefficient depending on force reduction factor *

iq  (ratio of 

elastic strength demand to yielding strength of bi-linear system), according to [4]: 
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Spectral displacement )( *
idel TS  may be calculated by pseudo-acceleration )( *

iael TS . 

Lastly, the displacement demand of the SDOF system is transformed back to the top 
displacement demand of the MDOF system by the inverse of Equation (6b): 

*
,, iciinic DD Γ= φ  (13) 

 
The seismic response of the MDOF system, in terms of internal forces in members, floor 

displacement, plastic deformations, etc., is then assumed as that obtained by pushover 
analysis at top displacement icD , . If a response quantity attains its maximum value for a top 

displacement smaller than icD , , such a maximum must be assumed. The capacity of ductile 

and fragile failure mechanisms must then be checked. 
 
 

3. THE N1 METHOD  
 

Readers are referred to the work by Bosco et al. [9] for an exhaustive explanation of the 
N1 method. Its operative approach is summarised in the following steps: 

a) Determination of the non-linear behaviour of the real structure. As usual in all non-
linear static methods, base shear ibV ,  versus top displacement icD ,  (subscript i indicates 

adopted force distribution) is determined by pushover analysis of the structure, by 
monotonically increasing horizontal forces until collapse. According to modern seismic 
codes, the analysis must be performed for at least two force distributions. 



b) Idealisation of the capacity curve with a bilinear relationship. The capacity curve of 
the real structure is idealised within the relevant range of displacements by a bi-linear 
relationship characterised by a yielding point with lateral strength ibyV ,  and yield 

displacement icyD , . Any of the various equivalence conditions in the literature or codes can 

be adopted. 
c) Determination of the displacement demand corresponding to a given PGA. 
c1) Determination of the elastic response of the structure. Maximum elastic 

displacement elD  of the top floor, due to a seismic event with a given PGA value, is 

evaluated by modal response spectrum analysis, considering the dominant vibrational mode 
(usually the first) or combining the contributions of the most significant modes of vibration. 

c2) Correction of the elastic response of the structure. Displacement demand icD ,  is 

obtained by correcting elastic displacement elD , in order to take into account the difference 

between inelastic and elastic behaviour. According to the bi-linear relationship determined 
at point b), effective period ieT ,  of the inelastic structure is given by: 
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To evaluate inelastic displacement icD , , elastic displacement elD  is multiplied by the ratio 

between the spectral displacement corresponding to ieT ,  and that corresponding to 

fundamental period 1T . A suitable correction must be assumed for structures with 1T  shorter 

than CT , depending on coefficient iR ,µ , i.e., the ratio between elastic strength demand belV  

(obtained from elastic spectral analysis) and the yielding strength of structure ibyV , . The 

following equations are therefore obtained: 
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in which reduction factor iR ,µ  is calculated as follows: 
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4. COMPARISON OF N1 AND N2 METHODS 
 

An ample parametric investigation was carried out to validate the N1 method, 
considering a set of 10 steel frames and 12 R/C frames with rigid connections, designed 
with regular and irregular mass distribution in height. This enables us to compare the 
results from the two methods and to propose an operative approach to correct N1 in order 
to obtain the same results given by N2, even when a force distribution proportional to the 
floor masses is applied. 

The set of frames covers a wide range of the structural parameters which influence their 
seismic responses and estimation by non-linear static methods. The fundamental period of 
the frames is in the range 0.40-2.40s, thus including cases in which both equal displacement 
and equal energy rules must be taken into account. 

 
4.1. Characteristics of analysed frames 

All the analysed frames were designed according to the method of Ghersi et al. [18] and 
Marino et al. [19]. This method allows the frames to achieve collapse by means of a global 
mechanism, in accordance with the capacity design criteria of modern seismic codes for 
frame structures (i.e., flexural strength of columns greater than that of converging beams, 
so that plastic hinges form in the latter, and the shear-over strength of members exceeds 
flexural strength). The frames were characterised by various span lengths (from 4.0 to 5.5 
m), inter-storey heights (from 3.0 to 3.5 m), number of spans (1, 2, 3, 5 and 6), number of 
storeys (2, 3, 4 or 6), sizes of steel and R/C sections, and extent of gravity loads in seismic 
combination. The irregularity in elevation of some frames was introduced by varying 
gravity loads on the floors. 

The steel frames were designed with HEB180 and HEB160 profiles (wide-flange shapes 
available in Europe) for columns, and IPE140 and IPE120 profiles for beams, made of 
S355 grade steel (characteristic yielding stress ykf =355 MPa, elastic modulus sE =210 

GPa). The main geometric characteristics are listed in Table 1 and shown in Fig. 1 (see 
footnotes to tables for names assigned to frames). 
 

Table 1. Geometries and design loads of steel frames. 

STEEL FRAMES: 
Span length 

[m] 
Inter-storey height 

[m] 
Gravity loads in seismic combination 

[kN/m] 
1_S3x4_R 4 3 Ro=8; F=11,5 
2_S5x2_R 4 3 Ro=11,5; F=11,5 
3_S5x4_I v4/5 v3,5/3 Ro=10; F=v5/20 
4_S5x4_I v4/5 v3,5/3 Ro=4; F=v2/8 
5_S5x4_R v4/5 3 Ro=3; F=4 
6_S1x3_R 4 3 Ro =8; F=10 
7_S1x3_I 4 3 Ro=20; F=v5/10 
8_S1x4_R 5,5 3 Ro=8; F=10 
9_S3x4_R 4 3 Ro=25; F=28 
10_S5x4_R v4/5 3 Ro=4; F=5,5 
Sixj, i=n. of spans, j=n. of storeys, R=Regular, I=Irregular, Ro=Roof, F=Floors, v=variable. 

 
Several geometries of R/C frames were examined, but columns and beam sizes and their 

steel reinforcements were unchanged. All the columns had a rectangular section of 400 x 



300mm and were reinforced with 10#16 longitudinal bars; all beams had a rectangular 
section of 300 (height) x 200mm (width) and were reinforced with 3#20 longitudinal 
bottom bars and 4#20 longitudinal top bars (Fig. 2). The materials were C35/45 concrete 
(

ckf =35 MPa, 
cE =30 GPa) and steel grade B450C (

ykf =450 MPa, 
sE =210 GPa). The 

main geometric characteristics of the frames are shown in Table 2 and Fig. 3. 
 

Table 2. Geometries and design loads of R/C frames. 

R/C FRAMES: 
Span length  

[m] 
Inter-storey height  

[m] 
Gravity loads in seismic combination 

[kN/m] 
11_RC1x3_R 5,5 3 Ro=28;F=30 
12_RC1x3_R 5,5 3 Ro =14;F =15 
13_RC6x3_R 5,5 3 Ro =28;F =30 
14_RC6x3_R 5,5 3 Ro =14;F =15 
15_RC5/2x4_I 5,5 v3,5/3 Ro =10;F =v10/30 
16_RC3x3_R 5,5 3 Ro =28;F =30 
17_RC3x3_R 5,5 3 Ro =14;F =15 
18_RC3x3_I 5,5 3 Ro =20;F =v10/40 
19_RC3x3_I 5,5 3 Ro =10;F =v5/20 
20_RC2x6_R 5,5 3 Ro =14;F =15 
21_RC2x6_I 5,5 3 Ro =10;F =v20/50 
22_RC3x3_I 5,5 3 Ro =7;F =v4/10 
RCixj, i=n. of spans, j=n. of storeys. R=Regular, I=Irregular, Ro=Roof, F=Floors, v=variable. 

 

 



 
Fig. 1. Geometries and design loads of steel frames. 
 
 

 
Fig. 2. Dimensions and reinforcement of columns and beams of R/C frames. 
 
 



 
Fig. 3. Geometries and design loads of R/C frames. 
 
 

4.2. Validation of N1 method 
The top displacement demand (Performance Point) of the frames was determined by 

applying both N2 (EC8) and N1 methods and comparing the results. According to common 
practice, pushover analyses involve two distributions of horizontal forces, one proportional 
to the first mode shape (‘modal pushover’, i=1) and one proportional to the floor masses 
(‘uniform pushover’, i=u). 

The seismic action considered in all analyses was characterised by the elastic response 
acceleration and displacement spectra of EC8, shown in Fig. 4 (soil class D, topographic 
class T1, reference return period of 475 years, PGA = 0.39g). The same figure also shows 
the range of periods for the frames. 



 
Fig. 4. Elastic response spectra according to EC8. 
 
Non-linear analysis of frames was carried out with MidasGen rel. 7.4.1 structural 

software [20]. A fibre approach was adopted [21-24] to reproduce the non-linear behaviour 
of members, thus keeping account of the M-N interaction in evaluating the structural 
response. 

The capacity curves to estimate the Performance Point with both non-linear static 
methods were determined for each frame and lateral load distribution with the same 
mathematical model, to ensure good comparability of results. 

 
4.2.1. Modal pushover analysis 

‘Modal pushover’ analyses (i=1) were first carried out on all frames applying a force 
distribution proportional to the first mode shape. Top displacement 1,cD  (Performance 

Point) of the frames was determined with both N2 (EC8) and N1 methods with the same bi-
linearisation curve criterion. The results are compared in Fig. 5: those obtained with N2 are 
assumed as reference values (X-axis) and those with N1 are shown on the Y-axis. All the 
values clearly lie almost exactly on the bisector, thus demonstrating that, for the considered 
load profile, both methods give the same results for both regular and irregular frames, 
independently of their 1T  period. 



 
Fig. 5. Comparison between top displacement demands determined with N1 and N2, with modal lateral 

force distribution. 
 
These results confirm those of Bosco et al. [9] according to their analyses of 108 steel 

frames. The equivalence of the two methods in the modal pushover case can easily be 

explained by considering that period *1T  of the equivalent SDOF system of N2 coincides 

perfectly with period 1,eT  of N1, provided that the same bi-linearisation criterion for the 

capacity curve is used. 
 
4.2.2. Uniform pushover analysis 

‘Uniform pushover’ analyses (i=u) were then carried out on all frames applying lateral 
force distribution proportional to the floor masses. The result of lateral forces being lower 
than in the modal pushover case, the frames showed stiffer behaviour and therefore had 
smaller values of ucD , . 

The displacement demands obtained with the two methods are compared in Fig. 6 and 
Tables 3 and 4. 

 
 



 
Fig. 6. Comparison between top displacement demands with N1 and N2, with uniform lateral force 

distribution. 
 

 
Fig. 7. Percentage difference between top displacement demands determined with N1 and N2, with 

uniform lateral force distribution. 
 



Table 3. Comparison between N2 (EC8) and N1 for steel frames: ‘uniform pushover’ analysis. 

STEEL FRAMES: 
1T  

[s] 

*
uT  

[s] 
ueT ,  

[s] 
ucD , (N2-EC8) 

[m] 
ucD , (N1) 

[m] 
Err 
[%] 

1_S3x4_R 1,29 1,70 1,32 0,284 0,293 3,2 
2_S5x2_R 1,07 1,57 1,31 0,261 0,264 1,3 
3_S5x4_I 2,25 3,31 2,41 0,439 0,545 24,1 
4_S5x4_I 1,46 2,11 1,54 0,351 0,347 -1,1 
5_S5x4_R 1,53 1,95 1,54 0,325 0,339 4,4 
6_S1x3_R 0,83 1,04 0,81 0,174 0,177 1,6 
7_S1x3_I 1,09 1,36 1,15 0,228 0,217 -4,8 
8_S1x4_R 2,40 4,15 3,14 0,441 0,594 34,8 
9_S3x4_R 2,10 3,55 2,78 0,441 0,573 29,7 
10_S5x4_I 1,77 2,37 1,87 0,394 0,414 5,0 

 
 
Table 4. Comparison between N2 (EC8) and N1 for R/C frames: ‘uniform pushover’ analysis. 

R/C FRAMES: 
1T  

[s] 

*
uT  

[s] 
ueT ,  

[s] 
ucD , (N2-EC8) 

[m] 
ucD , (N1) 

[m] 
Err 
[%] 

11_RC1x3_R 0,70 1,12 0,87 0,187 0,191 1,7 
12_RC1x3_R 0,52 0,82 0,64 0,137 0,121 -11,2 
13_RC6x3_R 0,77 1,16 0,92 0,194 0,199 2,7 
14_RC6x3_R 0,57 0,85 0,67 0,143 0,135 -5,6 
15_RC5/2x4_I 0,67 1,09 0,75 0,183 0,198 8,3 
16_RC3x3_R 0,76 1,18 0,94 0,197 0,202 2,6 
17_RC3x3_R 0,56 0,86 0,68 0,144 0,137 -4,9 
18_RC3x3_I 0,61 1,01 0,73 0,167 0,165 -1,3 
19_RC3x3_I 0,46 0,74 0,54 0,123 0,091 -26,1 
20_RC2x6_R 1,26 1,80 1,42 0,299 0,306 2,4 
21_RC2x6_I 1,38 2,01 1,59 0,334 0,335 0,2 
22_RC3x3_I 0,40 0,63 0,48 0,089 0,068 -23,3 

 
In the case of ‘uniform pushover’ analysis, when a constant force distribution is applied, N1 
and N2 yield quite different displacement demands. 

Matching the studies of Bosco et al. [9], Fig. 7 shows that, for structures with periods 1T  

between CT  and DT , the differences between the two methods are negligible, whereas for 

structures with longer periods, N1 overestimates the displacement demand with respect to 
N2 by as much as +30%. In contrast, for structures with periods shorter than CT , N1 

underestimates displacement by up to -30%. 

Note that, in the case of ‘uniform pushover’ analysis, *
uT  does not coincide with its 

respective ueT , , but the two differ by a factor α  estimated as follows: 
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In deriving Equation (18), when uniform force distribution is applied, *
um  is equal to M, 

the total mass of the real structure and the modal participation factor uΓ  is 1. 

As already reported by Bosco et al. [9], the differences between the methods (Figs. 6 
and 7; Tables 3 and 4) are due to the following contrasting effects: 

- N1 refers to mass *
1m , but N2 uses mass *

um = M > *
1m , thus providing period *

uT  

and spectral displacement )( *
udel TS  which are always larger than that obtained 

with N1; 
- the displacement demand is proportional to factor iinΓφ , which is 1 in N2 and 

111 >Γnφ in N1; 

- uR ,µ  differs from *
uq ; consequently, for structures with periods ueT , < *

uT , the 

coefficients of displacement correction for equal energy rules change; 
These contrasting effects are compensated as the period of the structure varies. That is, 

for a structure with periods ueT ,  and *
uT  between CT  and DT , the difference between the 

displacement demands of N2 and N1 is generally small, since the spectral displacement is 

linearly proportional to the period and therefore )( *
udel TS / ≅)( ,uedel TS *

uT / ueT , >1. However, 

this effect is almost completely compensated, since 111 Γ<=Γ nuun φφ  and ucD , (N2-EC8) 

from Equation (13) is almost equal to ucD , (N1) (Equation (15a)). For structures with long 

periods, i.e., belonging to the constant displacement branch of the response spectrum, 

elongation of period *
uT  with respect to ueT ,  and 1T  does not produce any increase in the 

displacement demand. However, the difference between uunΓφ  and 11 Γnφ  increases the 

displacement demand evaluated by N1 with respect to N2. This difference is greater if both 

ueT ,  and *
uT  are longer than DT , and decreases only if *uT  is longer than DT . For structures 

with periods shorter than CT , the opposite result is obtained. In this range, the spectral 

displacement is proportional to the square of the period and the effects of the difference 

between *
um  and *

1m , which makes )( *
udel TS  larger than )( ,uedel TS , prevails over those of 

the difference between uunΓφ  and 11 Γnφ . This difference is greater if both ueT ,  and *
uT  are 

shorter than CT  and decreases only if ueT ,  is shorter than CT . For these frames, further small 

differences between the displacement demand arise from the fact that different values of 

force reduction factors uR ,µ  (Equation (16)) and *
uq  (Equation (12)) are obtained. 

 



4.3. Conclusions: assessment of reliability of N1 
Tests on a sample of 22 two-dimensional frames allowed the following conclusions to 

be drawn: 
- in all the studied frames, N1 as formulated by Bosco et al. [9] and N2 yield the 

same displacement demand when a force distribution corresponding to the first 
mode shape is applied (‘modal pushover’ analysis). This evidence, which can be 
theoretically proved only for regular frames dominated by main mode shape [9], 
was also confirmed for irregular frames; 

- N1 and N2 provide clear-cut differences for short- and long-period frames when 
a force distribution proportional to the floor masses is used (‘uniform pushover’ 
analysis). These differences are highlighted in the previous section and it is 
therefore necessary to introduce the appropriate corrections to make N1 
consistent with N2. 

 
 

5. PROPOSAL FOR AN N1 CORRECTED METHOD 
 
According to the above results, an improved version of N1 is now proposed with the aim 

of obtaining results consistent with N2 even in the case of ‘uniform pushover’ analysis. 
As already discussed in section 4, when a force distribution proportional to the floor 

masses is applied, the effective period ueT ,  of N1 is always shorter than the respective 

period of the idealised SDOF system *uT  of N2 by a factor α  (see Equation (19)). 

According to Equation (4) and by means of easy calculations, it can be demonstrated that: 
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where iΓ  are the modal participation factors of the higher modes already defined in 

Equation (5), and { }r  is the influence vector for seismic excitation. 

It is easy to verify that, if eigenvectors { }iφ  are normalised with respect to mass matrix 

[ ]M , the expression of coefficient β  can be reduced to: 
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where 1≅β  in structures where the first mode shape is dominant, but it is also close to 1 in 
irregular frames, as Table 5 shows. 
 
 
 
 
 



Table 5. Values of coefficients α  and β  for frames. 

STEEL FRAMES: α [-] β [-] R/C FRAMES: α [-] β [-] 

1_S3x4_R 0,77 1,04 11_RC1x3_R 0,78 1,01 
2_S5x2_R 0,84 1,01 12_RC1x3_R 0,78 1,02 
3_S5x4_I 0,73 0,99 13_RC6x3_R 0,79 1,02 
4_S5x4_I 0,73 0,99 14_RC6x3_R 0,79 1,02 
5_S5x4_R 0,79 1,05 15_RC5/2x4_I 0,69 1,09 
6_S1x3_R 0,78 1,03 16_RC3x3_R 0,79 1,02 
7_S1x3_I 0,84 0,96 17_RC3x3_R 0,79 1,02 
8_S1x4_R 0,76 1,02 18_RC3x3_I 0,73 0,99 
9_S3x4_R 0,78 1,02 19_RC3x3_I 0,73 1,00 
10_S5x4_I 0,79 1,05 20_RC2x6_R 0,79 1,03 
   21_RC2x6_I 0,79 1,00 
   22_RC3x3_I 0,76 1,00 

 
Equation (20) estimates the differences between the two methods. 
Since coefficient α  (Equation (20)) can easily be evaluated by modal response spectrum 

analysis, bypassing the definition of the SDOF system, Equations (14) and (16) can be 
corrected and Equation (15a) reformulated if the following form is used in ‘uniform 
pushover’ analyses: 
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clearly: 
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Fig. 8 compares the top displacement demands for uniform lateral load distribution 
obtained with the proposed N1 corrected method with those of the N2 (EC8) method. 

 
Fig. 8. Comparison between top displacement demands with uniform lateral load distribution with N1 

corrected and N2. 
 
Clearly, with this proposal, the results from the N1 corrected and N2 (EC8) methods 

also coincide when a force distribution proportional to the floor masses is used, for all 
regular and irregular frames. In its corrected format, N1 can be applied in the same 
compliance conditions as N2, i.e., in plan-regular buildings with dominating first mode, for 
which 1≅β . 

 
 

6. SUMMARY AND CONCLUSIONS 
 

Bosco et al.[9] proposed the N1 method as an alternative to the well-known N2 method 
to assess the seismic response of existing and new structures by non-linear static analysis. 
N1 has the merit of being simpler in practical application, because it does not require 
definition of the equivalent SDOF system as an intermediate step. 



The two methods provide the same results in the case of modal patterns of lateral forces, 
but they lead to different displacement demands for short- and long-period structures in the 
case of uniform patterns. These discrepancies were analysed allowing us to extend and 
improve N1. In the present work, the N1 corrected method is presented and validated with 
reference to a set of 22 steel and R/C frames, with regular and irregular mass distribution in 
height. This analytical correction was facilitated by introducing coefficient α , calculated in 
closed form from the results of modal analysis. N1 thus becomes equivalent to N2 and can 
be used for practical applications in the same conditions (i.e., in plan-regular buildings with 
dominating first mode). Like N2, N1 can also be extended to study of irregular or high-rise 
buildings in which the influence of higher modes (in both plan and elevation) can be 
evaluated by standard elastic modal response spectrum analysis. Further in-depth study of 
the N1 corrected method is needed and should be the focus of future research. 
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