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Ultimate Strength Domain of Reinforced Concrete Sections 
under Biaxial Bending and Axial Load
by Francesco Vinciprova and Giuseppe Oliveto

A direct method is provided for the construction of the ultimate 
strength domain of reinforced and/or prestressed concrete sections 
under biaxial bending and axial force. The method, based on the 
principle of plane sections, only requires the specification of the 
stress-strain relationships for each component material, the preten-
sion strains, and possibly any other applied distortion. The results 
may be used for safety checks in new designs and in the rehabilita-
tion of vulnerable or deteriorated structures. A few examples are 
used to demonstrate the performance of the method and its useful-
ness in practical applications.

Keywords: analytical techniques; biaxial bending; reinforced concrete 
sections; strength domain.

INTRODUCTION
The construction of the strength domains of cross sections 

of structural members has a long history. It is related to the 
problem of designing safe structures and is in fact to some 
degree an extension to the cross section of the strength criteria 
for materials such as Rankine, Tresca, and the Von Mises 
criteria, to quote only a few of the most popular. However, 
as is well-known, the strength criteria are often not in agree-
ment with each other and some work is better than others, 
depending on the situation considered. Strength domains or 
failure surfaces in terms of stress resultants for a cross section 
should be the natural extension of strength criteria for mate-
rials. As there are six independent stress components for 
the Cauchy stress tensor, there are six stress resultants to be 
considered for the cross section—that is, an axial force, two 
shear forces, two bending moments, and a torque.

The task of producing a complete yield or resistance or 
rupture surface for a cross section is so daunting, however, 
that so far, none actually exist, even though in several 
branches of mechanics they are very much needed. The first 
complication with respect to a strength criterion is that there 
is the need for integration of the stress components over the 
cross section and the result is obviously dependent on the 
shape of the cross section. Moreover, the cross section is 
often of a composite nature, where different materials are 
used, such as concrete, reinforcing steel, prestressing steel, 
and fiber-reinforced polymer (FRP), to mention only widely 
used materials and technologies.

Although the six-dimensional domain is difficult to obtain 
exactly, several cross sections of the actual surface have been 
obtained with the development in the last century of metal and 
concrete structural plasticity. The results are available in text-
books on steel structures and on concrete structures.1-3 Well-
known, for instance, are the bending-moment-axial-force-
interaction domains that are plane curves if the bending is 
direct. Even when neglecting both shear forces and torque, 
it has been recognized that in many instances the interac-
tion of biaxial bending and axial force cannot be ignored. 
This has been recognized by most design codes in the 

world, which provide simplified methods to account for the 
abovementioned interaction. Among these are ACI 318,4 AS 
3600,5 Eurocode 2 (EN 1992-1-1),6 Eurocode 4 (EN-1994-1-
1),7 and Eurocode 8 (EN 1998-3).8 In this paper, the authors 
are concerned with the development of a simple numerical 
algorithm for the construction of the interaction domain 
of reinforced concrete sections, possibly prestressed and/
or including FRP in the form of bars or plies, or of steel 
sections encased in concrete or even tubular steel and FRP 
sections filled with concrete.

An overview of the state of the art in the field may be 
found in the paper by Furlong et al.9 In this paper, only 
essential literature will be reviewed. All code developments 
are supported by scientific research and for the problem 
being considered, the relevant research is provided in a paper 
by Bresler,10 where two empirical methods for the construc-
tion of the interaction surface are introduced—namely, the 
reciprocal load method (RLM) and the load contour method 
(LCM). Because these methods are well-known and avail-
able in the literature, it suffices to say that these are semi-
analytical methods in the sense that they provide equations 
that, on the basis of empirically evaluated parameters, allow 
for the construction of the interaction surface.

Following this seminal paper, three main research lines 
have been pursued to deepen understanding of this topic. One 
line has consisted of experimental research aimed at checking 
the assumptions on the basis of the two methods mentioned 
in the previous paragraph and at evaluating the accuracy 
that can be obtained. Noteworthy among this research is the 
work by Ramamurthy.11 Another line of research has been 
aimed at providing more accurate analytical expressions 
for the construction of the failure surface. The works by 
Ferguson et al.,12 Wight and Mac Gregor,13 Silva et al.,14 and 
Bonet et al.15 follow this line. However, a considerable 
effort has been devoted to a third line of research, which 
has tackled the problem of providing the failure surface 
using numerical algorithms based on the integration of the 
governing equilibrium equations and constitutive laws for 
the constituent materials. Early basic work is considered in 
textbooks by Park and Pauley,16 Nielsen,17 and MacGregor 
and Bartlett.18 Also in this line or research are the works 
by Kawakami et al.19; Landonio and Perego20; Hulse and 
Mosley21; Contaldo and Faella22; Spiegel and Limbrunner23; 
Bousias et al.24; De Vivo and Rosati25; Rodriguez-Gutierrez 
and Aristizabal-Ochoa26; Rodriguez-Gutierrez and Aris-
tizabal-Ochoa,27 who also considered prestressed concrete 
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sections; Fafitis,28 who transforms the double equilibrium 
integrals into line integrals; Sfakianakis29; Consolazio et 
al.30; Hock and Cheong31; Charalampakis and Koumousis32; 
and Di Ludovico et al.33 Other works in this line study the 
integration methods of the stresses over the cross section. 
Among these are studies by Bonet et al.34,35

The reference by Di Ludovico et al.33 is notable for a state-
of-the-art treatment of the topic and because it provides a 
good basis for the work that will be presented herein. The 
paper develops a numerical algorithm based on a finite 
element discretization of the cross section. The applied load 
is increased monotonically until the ultimate limit state of 
the cross section is reached. For a given value of the axial 
force acting on the cross section, the loading axis in the cross 
section is provided. For a given value of the bending moment, 
which is perpendicular to the loading axis, a nonlinear 
system of equations must be solved to find the position 
of the neutral axis and subsequently strains, stresses, and 
stress resultants. This procedure is iterated several times for 
successive increments of the bending moment or curvature 
until the ultimate limit state for the cross section is reached. 
Having completed this task, one point of the failure surface 
of the cross section under axial force and biaxial bending is 
found. Other points are obtained by slightly changing the 
ratio between bending moments and repeating the previous 
task. In the end, a cross section of the failure surface for 
constant axial force is generated.

RESEARCH SIGNIFICANCE
The construction of the entire failure surface with the 

method described at the end of the introduction requires 
the repetition of the previously described tasks for several 
values of the axial force, from the failure value in compres-
sion to the failure value in tension. It is obvious that the 
construction of the entire failure surface in this way is a very 
time-consuming task, but a much more efficient method 
is available. This method, already known in literature and 
recommended by Marín36 but somewhat neglected, will be 
formulated and exploited in the following sections.

GENERAL FORMULATION OF THE PROBLEM
Given a cross section of general shape and material compo-

sition (Fig. 1), the problem is to solve is the construction of 
the failure surface under axial force and biaxial bending in 
the quickest way possible. To make the problem as general as 
possible, assume that the cross section does not admit axes of 
symmetry. Let a Cartesian orthogonal reference frame O, X, 
Y be defined within the plane of the cross section, to which 
the axial force and the bending moments are referred. For a 
given position of the neutral axis, a rotated Cartesian orthog-
onal reference system O, x, y is defined such that the x-axis 
is parallel to the neutral axis n, and a is the anti-clockwise 
rotation of the x-axis with respect to the X-axis. The Bernoulli 
hypothesis, which states that initially plane cross sections 
remain plane after deformation, allows for the deformation 
shown graphically in Fig. 1 to be given by the following 
mathematical expression

ε = ε + κ0 y  (1)

where e0 is the axial strain on the fiber defined by the equa-
tion y = 0; and k is the curvature.

At this point, one can only assume that the axial stress is 
related to the axial strain via a general nonlinear relation-

Fig. 1—General cross section, global and local reference frames, neutral axis, and strain 
and stress diagrams.
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ship—that is, s = f(e)—where only one value of the stress 
corresponds to a given value of the strain, while more than 
one strain may correspond to a given stress.

The three equations given as follows must be satisfied to 
ensure equilibrium between internal stresses and externally 
applied load resultants

( )
( )
( )

σ = ε =∫ ∫

σ = ε =∫ ∫

σ = ε =∫ ∫

A A

x
A A

y
A A

dA f dA N

y dA yf dA M

x dA xf dA M

 (2)

The transformation of coordinates

α − α     
= ⋅     α α     

cos sin
sin cos

x X
y Y

 (3)

allows for Eq. (2) to be written with reference to the fixed 
reference frame O, X, Y, providing the following system 
of equations

( )
( ) ( )
( ) ( )

ε =∫

α ⋅ ε + α ⋅ ε = α − α∫ ∫

α ⋅ ε ⋅ − α ⋅ ε ⋅ = α + α∫ ∫

sin cos cos sin

cos sin sin cos

A

X Y
A A

X Y
A A

f dA N

X f dA Y f dA M M

X f dA Y f dA M M

 (4)

The system of Eq. (4) provides the proper basis for the 
problem. In most of the literature, the problem is approached 
in the following way. Given the three stress resultants (N, MX, 
MY), find the position of the neutral axis—that is, the angle 
a and the ordinate y0 = e0/k—and check whether the ultimate 
strain has been exceeded in the most distant fibers from the 
neutral axis. Generally, a loading process is assigned by 
which the external stress resultants are increased step by step 
according to a given law until a failure condition is reached—
that is, one of the component materials in the cross section 
reaches the rupture strain. It is evident that the governing 
system of equations is highly nonlinear because of the nonlin-
earity of the constitutive laws of the constituent materials 
and because of the geometrical nonlinearity associated to the 
position of the neutral axis. This system must be solved many 
times just to obtain a single point of the failure surface. It is 
obvious that this is not a very efficient method if one wants 
just to construct the failure surface of a given cross section. 
However, the method may be justified if one has just one set 
of stress resultants and wants to check whether this is safe or 
not, or what the safety coefficient is for a given loading path.

Before a much more efficient method of producing the failure 
surface is formulated, it may be worth noting that the given system 
of Eq. (4) is strictly sufficient for the evaluation of the three 
kinematical unknowns a, e0, and k, which solve the problem.

MARÍN’S METHOD
The following describes a much more efficient way 

of solving the problem of constructing the failure surface 
of a cross section under axial force and biaxial bending. 
Although the method has often been used by engineers 
to solve problems elegantly that otherwise would be very 
hard to solve, it was recommended in the present context 

by Marín36 in 1979 to satisfy the ACI 318-71 requirements. 
Rather than starting from a set of stress resultants and then 
trying to find a point of the failure surface by following a 
given step-by-step loading process, the method starts from 
a given position of the neutral axis—that is, angle a and the 
equation of the neutral axis are known

= 0y y  (5)

Equation (1) and Eq. (5) provide the following results

( )ε = −κ ⋅ ε = κ ⋅ −0 0 0y y y  (6)

For each material that constitutes the cross section, the 
maximum strain et is related to the maximum distance yi 

from the neutral axis via the relationship

( )ε = κ ⋅ − =0 1, 2, ,i iy y i N  (7)

The failure of the cross section occurs as soon as a material 
reaches the rupture or breaking strain—namely ef = ef

r—and 
the curvature that leads the cross section to failure, for the 
given position of the neutral axis, is given by the equation

ε
κ =

− 0

r
j

r
jy y

 (8)

At this point, the strain diagram at failure is completely 
known if the result from Eq. (8) is used in Eq. (6). The corre-
sponding stress resultants may be obtained by using Eq. (2), 
while a coordinate transformation provides the results in the 
fixed coordinate system O, X, Y. The set of stress resultants 
thus evaluated provides a point of the failure surface of the 
cross section. The most important thing that must be observed 
is that there are no nonlinear equations to be solved with this 
method and the only operations needed are the integral calcu-
lations for the evaluation of the stress resultants. As will be 
shown later, even those can be performed in closed form.

The construction of the failure surface proceeds with the 
calculation of a family of isogonic lines, each of them associ-
ated with a given angle a for the neutral axis. By translating 
the neutral axis slowly, a set of failure points on a isogonic 
line may be generated. These points may be as close as one 
wishes because their distance depends only on the amount 
by which the neutral axis is translated. The isogonic lines 
are not generally plane curves, but are certainly plane if the 
neutral axis is parallel to one of the principal axes of the cross 
section. Once an isogonic line has been completed, the next 
one is constructed by rotating the neutral axis by a conve-
nient amount. It is obvious that the family of isogonic lines 
thus constructed allows for a complete characterization of the 
failure surface of a given cross section. The whole surface 
may be constructed or simply areas of the entire surface of 
specific interest. The accuracy of the whole surface or of a 
required area can be made as good as required by reducing the 
translation and rotational steps of the neutral axis.

IMPLEMENTATION OF METHOD
The implementation of the model requires some basic opera-

tions that are listed in the following. The first step is the descrip-
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tion of the cross section with the definition of exterior and interior 
boundaries, position of reinforcement and pretensioned bars, 
position of FRP bars and/or plies, and position of structural 
steel. The second step consists of the definition of the consti-
tutive laws of the constituent materials. The third step consists 
of the calculation of the stress resultants as specified by Eq. (2) 
and the final step consists of their transformation into the fixed 
reference frame O, X, Y. The various phases that have been listed 
previously will be described in some detail as follows.

Description of cross section
It is assumed that all boundaries of the cross section 

are straight line segments; if a curved boundary exists, it 
is assumed that this can be approximated by a polygonal, 
which can be made as close as possible to the given boundary 
as the number of vertices of the approximating polygonal 
increases. All geometrical parameters are referred to the 
fixed reference frame O, X, Y as follows:
•	 Xi

c and Yi
c are the coordinates of the vertices of the 

various boundaries of the cross section;
•	 Xi

s and Yi
s are the coordinates of the centroid of the ordi-

nary reinforcing bars;
•	 Xi

sp and Yi
sp are the coordinates of the centroid of the 

prestressing bars; and
•	 Xi

ss and Yi
ss are the coordinates of the vertices of the 

structural steel section encased in the concrete section.
The corresponding coordinates in the local reference 

frame O, x, y are obtained via the coordinate transformation 
provided by Eq. (3). The equation of the boundary segment j 
between vertices i and i + 1 takes the expression

= +j jx m y q  (9)

where

+ +

+ +

− −
= = −

− −
1 1

1 1

C C C C
C Ci i i i

j j i iC C C C
i i i i

x x x x
m q x y

y y y y
 (10)

provided that the segment is not parallel to the x-axis, in 
which case the equation becomes

+= = 1
C C
i iy y y  (11)

Constitutive laws
Any of the constitutive laws used in the literature are 

allowed within the context of this work; for instance, the 
constitutive laws listed by Di Ludovico et al.33 However, for 
illustrative purposes, some constitutive laws recommended 
by Eurocode 26 and Eurocode 47 are used herein, along with 
the softening Kent and Park37 law for unconfined concrete.

According to the considered Eurocodes, the constitutive 
law for concrete assumes that the concrete does not respond 
in tension while a parabola-rectangle stress diagram is asso-
ciated to compression strains. In mathematical terms, this 
may be expressed as follows

( )

( ) [ ]
( ) [ ]

σ ε = ∀ε ≥

 ε ε
σ ε = −α ⋅ − ∀ε ∈ ε ε ε 
σ ε = −α ⋅ ∀ε ∈ ε ε

1
1 1

1

0 0

2 ,0

,

c

c cd c
c c

c cd cu c

f

f

 (12)

When the Kent and Park37 law is used, the first and second 
equations of Eq. (12) still hold while the third equation is 
replaced by Eq. (13), with stress varying linearly from –a·fcd  
to –b·fcd.

( ) ( ) [ ] ε − ε
σ ε = −α + α − β ∀ε ∈ ε ε ε − ε 

1
1

1

,c
cd cu c

cu c

f  (13)

By setting

   ε ε εκ κ
= − = − = −   ε ε ε ε ε   

2
0 0 0

0 1 2 2
1 1 1 1 1

22 1
c c c c c

t t t  (14)

the second equation of Eq. (12) may be written as follows

( ) ( )σ = −α ⋅ + + 2
0 1 2c cdy f t t y t y  (15)

By setting

β β β   − ε − ε + ε κ −      α α α= =
ε − ε ε − ε

0 1

0 1
1 1

1 1c cu
L L

cu c cu c

t t  (16)

Equation (13) may be written as follows

( ) ( )σ = −α ⋅ +0 1
L L

c cdy f t t y  (17)

The parameters appearing in the previous equations are 
specified by Eurocodes 2 and 4.

The constitutive law for reinforcing steel assumes elastic-
perfectly plastic behavior with limited tensile and compres-
sion strain. In mathematical terms, this is expressed by the 
following equations

( )
( ) ( )

 σ ε = ε ∀ε ∈ −ε ε 

   σ ε = ε ε ∀ε ∈ −ε −ε ∪ ε ε   

,

sgn , ,

s s yd yd

s s yd su yd yd su

E

E  

(18)

For prestressing steel, Eurocode 2 specifies a bilinear 
stress-strain relationship

ε  σ = ∀ε ∈ ε ε

ε − ε 
 σ = + − ∀ε ∈ ε ε   γ ε − ε 

0,

,

p pd yd
yd

pk yd
p pd pd yd ud

s ud yd

f

f
f f

 (19)

Stress resultants
The cross section is divided into a finite number of trap-

ezoids with bases parallel to the neutral axis and the two 
oblique sides belonging to its boundary, as is shown in 
Fig. 1. The partition lines parallel to the neutral axis, besides 
the neutral axis itself defined by the equation y = y0 and 
the straight line y = yc1 for which it is e(yc1) = ec1, all pass 
through vertices of the boundary of the cross section. Axial 
force N and bending moments Mx and My may be given by 
the expressions
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 (20)

where nS is the total number of ordinary reinforcing steel 
rods; nS

p is the total number of pretensioned steel bars; nSS 
is the number of trapezoids into which the structural steel is 
divided; nC

t is the number of trapezoids into which the part 
of cross section in tension is divided; nC

cp is the number of 
trapezoids in the compression part of the cross section where 
the stress has a parabolic distribution; nC

cL is the number of 
trapezoids in the compression part of the cross section where 
the stress has a linear distribution; and nC

cR is the number of 
trapezoids in the compression part of the cross section where 
the stress is constant.

Let us now consider the i-th trapezoid whose oblique sides 
are the j-th and the k-th sides of the polygon, which defines 
the boundary of the cross section, and let ysup and yinf be the 
ordinates of the two bases of the trapezoid.

The contributions to the stress resultants of the trapezoid 
considered are calculated as follows

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )
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M x y xdxdy x y xdxdy

 (21)

By using Eq. (9), (11), (15), and (17), the aforementioned 
integrals lead to the following results if the trapezoid belongs 
to the region where the stress has a parabolic distribution

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

 −  = −α − − + − + − +  
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If the trapezoid belongs to the region where the stress is 
linear, the following results are found
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(23)

If, instead, the trapezoid belongs to the region where the 
stress is constant, it results

( )( ) ( )

( ) ( )

( )( ) ( ) ( )

2 2
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2 2 3 3

2 2 3 3
2 2 2 2
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2 3
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2 2 2 3
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i cd j k sup j k

sup inf sup infC
xi cd j k j k

sup inf sup infC
yi cd j k sup inf j j k k j k

y y
N f q q y y m m

y y y y
M f q q m m

y y y y
M f q q y y m q m q m m

 −
= −α − − + − 

  
 − −

= −α − + − 
  
 − −

= −α − − + − + − 
  

 (24)

Equations (22) through (24) provide closed-form contribu-
tions to the stress resultants and are only valid for the consti-
tutive laws for concrete defined in the appropriate section 
above. However, corresponding results may be easily found 
for several other common constitutive laws.

EXAMPLES AND COMPARISON WITH RESULTS  
IN LITERATURE

In this section, results obtained using the presented 
method are compared with those available in the literature. 
The results are also compared to those obtained using fiber 
models, as implemented in the OpenSees38 software. Prob-
lems, which may arise when using those methods or similar 
ones, are highlighted and the usefulness of the proposed 
method is reaffirmed. Strength domains for some typical 
cross sections are also shown.

Comparison of results for square cross section
The simplest cross section that can be considered is the 

rectangular one. Some results for this type of cross section 
are shown by Di Ludovico et al.33 The 250 x 250 mm (9.84 x 
9.84 in.) square cross section shown in Fig. 2 is provided 
with four reinforcement bars, each 12 mm (0.472 in.) in 
diameter, with a concrete cover of 30 mm (1.18 in.).

The material properties considered, also shown in Fig. 2, 
are steel design yield stress fyd = 278 MPa (40.32 ksi) and 
concrete design strength afcd = 13.28 MPa (1.93 ksi).

The strength domain constructed by using the method 
presented in the previous section is shown in Fig. 3(a). In 
the construction of this domain, the rotation of the neutral 
axis from one position to the adjacent one was chosen 
as 10 degrees or p/18 radians. Therefore, 18 isogonic curves 
were generated. The number of points on each of these curves 
was established by requiring 25 points for each character-
istic rupture mode of the cross section, defined by a strain 
interval ]emin, emax[. Because there are six rupture modes, the 
total number of points on each isogonic curve turns out to 
be equal to 150. Therefore, the surface, or boundary, of the 
strength domain shown in Fig. 3 is identified by an irreg-
ular grid of 18 x 150 points. The quadrilaterals visible in 
Fig. 3 each correspond to two adjacent isogonic curves and 
two adjacent strain values.

The intersection of the strength domain with planes of 
constant axial force, as shown in Fig. 3(b), provides the 
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plane curves given in Fig. 4(a). These were produced to 
compare the results obtained by the presented method with 
corresponding results available in the literature. In fact, the 
results by Di Ludovico et al.33 were given in the form of 
discrete points in the MX-Mr plane, for various levels of axial 
force. In Fig. 4(a), the continuous lines refer to the results 
of the present method, while the symbols show the results 
by Di Ludovico et al.,33 each line being characterized by a 
given ratio n of the actual axial force to the ultimate value 
in compression. The agreement is excellent, showing that 
both methods lead to the same results. However, it should be 
noticed that no iterations are needed to produce the present 
results and the entire strength domain can be derived with 
little computational effort.

To have a quantitative measure of the accuracy of the 
results obtained and to be able to make a comparison with 

other methods, the following definition is adopted for the 
error. If P – O is the vector denoting the solution obtained by 
the present method and Q – O denotes the solution obtained 
by another method, the relative error may be defined by the 
following formula

( ) ( )
( ) ( )

− ⋅ −
=

− ⋅ −
Q P Q P

e
P O P O

 (25)

The graph of the error of the results provided by Di 
Ludovico et al.33 is shown in Fig. 4(b). It may be seen that 
the maximum error is less than 0.01.

The software OpenSees (Mazzoni et al.39) has been used 
to implement a fiber model for the evaluation of some points 

Fig. 2—Reinforced concrete square cross section considered by Di Ludovico et al.33

Fig. 3—Strength domain for  reinforced concrete section shown in Fig. 2: (a) domain; and 
(b) planes of constant axial force.

Fig. 4—Cross sections of strength domain for constant axial force: (a) comparison with 
results by Di Ludovico et al.33; and (b) relative error.
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of the boundary of the strength domain (failure surface), 
much in the same way as was done by Di Ludovico et al.33 A 
specific procedure for the evaluation of the strength domain 
is not available in OpenSees. Users must therefore apply 
their skills to develop a method that may serve the purpose, 
taking advantage of the available procedures. The present 
authors have used the three following methods.

First method—Given the values of the axial force N and 
of one bending moment (for example, MX), the value of the 
moment MY that leads to the ultimate curvature kYu—that is, 
the one derived on the basis of the constitutive model—is 
obtained via a step-by-step procedure in which the required 
bending moment is increased gradually until the failure 
conditions are reached. It should be noticed, however, that 
the ultimate curvature kYu must be provided to terminate 
the procedure. The authors used the method proposed in 
the present work to provide the ultimate curvature. In this 
case, results appear to be fairly good for low and moderately 
large values of the compression axial force. A maximum 
error equal to 0.04 is found for an axial force ratio n = 0 at a 
moment ratio MY/MX equal to 0.2. Alternatively, the present 
procedure can be applied by prescribing the axial force N 
and the bending moment MY and by increasing the curvature 
kX up to the ultimate value kXu which, as before, has been 
evaluated by using the method proposed in this work.

The largest error is again equal to 0.04 for an axial force 
ratio n = 0, but this time it occurs for a bending moment ratio 
MX/MY ≅ 0.2. Although the error incurred by using the proce-
dure described herein is generally rather small, it is clear that 
there can be instances when it can be noticeable. The results 
discussed previously were derived by using the OpenSees 
procedure MomentCurvature3D.tcl.

Second method—Rather than prescribing the axial force 
N and one bending moment as in the previous method, 
here, only the axial force N is provided. Then two incre-
mental analyses are performed in sequence; in the first one, 
the largest between the two curvature components kX and 
kY is increased to the ultimate value max{kXu, kYu}, while 
in the second the smallest between the two components is 
increased to the ultimate value min{kXu, kYu}.

The results obtained by OpenSees tend to cluster around 
the axes of the graphs, leaving the central part uncovered, 
and are not shown for the sake of brevity.

This results in a relatively large error which, in some 
cases, can reach nearly 0.15 (or 15%) in the region where 
the two bending moments are almost equal.

One might now wonder why the two incremental analyses 
were performed in the sequence previously described. As a 
matter of fact, if this ordering had not been imposed, the 
succession would have simply been kX followed by kY. Very 
large errors, in the range of 10 to 40%, would have been 
obtained in most cases. Again, the graphs are not shown for 
space limitations.

The results referring to the second method described previ-
ously were obtained by a simple modification of the example 
of the OpenSees procedure MomentCurvature3D.tcl.

Third method—In this method, the axial force N is 
prescribed just as in the two previous methods. The two 
components kXu and kYu of the ultimate curvature are assigned 
together with the prescribed value of the axial force N as a 
loading condition using the OpenSees Command “sp”.

It is important to realize that even in the present case, 
the method proposed in this work for the evaluation of the 
ultimate curvature is of paramount importance. The results 
obtained are shown in the graphs of Fig. 5(a) and in terms of 
relative error in the graphs of Fig. 5(b).

It is interesting to notice that in this case, the results are 
similar to those obtained by Di Ludovico et al.,33 and the rela-
tive error is also of the same order of magnitude. A variant of 
the present method consists in assigning as a loading condi-
tion the triplet {eG, kXu, kYu} corresponding to {N, kXu, kYu}. In 
this case, the error has been calculated starting from dimen-
sionless expressions of the stress resultants (stress resultant 
divided by its ultimate value in the absence of the other two). 
Although the error is almost everywhere below 0.01, there 
are a few instances where it approaches 0.03. In conclusion, 
it appears that OpenSees can be advantageously used for the 
calculation of the strength domain, but the procedure for its 
calculation should be carefully selected.

From the analyses presented herein, it appears that the 
third method, where the triplet {N, kXu, kYu} is prescribed 
as a load condition, provides the best results, which are 
also comparable in terms of accuracy with those provided 
in the literature by using specifically designed procedures. 
However, the fact that any procedure activated within 

Fig. 5—Cross sections of  strength domain for constant axial force: (a) comparison with 
results obtained by using OpenSees software, given values of axial force N and of  two 
curvatures; and (b) relative error.
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OpenSees takes advantage of the method proposed herein 
should not be overlooked.

This application shows one of the potential uses of the 
present method which is to check that numerical algorithms 
for axial force and biaxial bending interaction provide accu-
rate results.

Comparison of results for L cross sections
A series of results concerning an L-shaped section is due to 

Fafitis.28 The cross section considered is shown in Fig. 6 and 
consists of two unequal concrete flanges 21 in. (533.4 mm) 
thick and 135 in. (3429 mm) and 175 in. (4445 mm) long, 
respectively. The reinforcement, placed on the centerline, 
consists of 29#10@10”cc with a design yield stress fyd = 
60,000 psi (413.69 MPa). The stated concrete strength is fcd 
= 9000 psi (62.05 MPa).

The comparison with the results obtained by the present 
method is given in Fig. 7(a) and the results provided by 
Fafitis28 are generally in excellent agreement. As may be 
seen from Fig. 7(a), the results are provided in the form 
of graphs MX-MY for three different values of the axial 
force: N = –9000 kips (–40,034 kN), N = –24,000 kips 
(–106,757 kN), and N = –44,000 kips (–195,722 kN). At 
the bottom of the curve corresponding to N = –9000 kips 
(–40,034 kN); a few of the points provided by Fafitis28 show 
a rather erratic behavior. This may indicate that the method 
used by Fafitis28 can occasionally have accuracy problems.

This is confirmed by the relative error curves shown in 
Fig. 7(b), where a maximum error of nearly 8% is found 
for an axial force of –9000 kips (–40,034 kN). However, 
for the remaining values of the axial force considered, the 
maximum error never exceeds 2%.

The comparison with the results obtained by OpenSees 
assigning the two limit curvature components and the corre-
sponding limit axial deformation show good agreement, 
with the relative error never exceeding 0.02.

All of the examples given previously show that the present 
method is capable of producing the strength domain for 
any type of reinforced concrete cross section in an efficient 
way. The way the domain is constructed avoids all problems 
related to accuracy or convergence in the numerical solution 
of the nonlinear algebraic equations. The only issues that 
have to be addressed are the discretization of the boundary 
of the cross section and the choice of the number of points 
used for the representation of the boundary surface of the 
strength domain. The first is, in most cases, not a real issue 
because the reinforced concrete sections are generally of 
polygonal form while the second can be easily addressed by 
increasing the number of points as necessary.

It should be noted that the strength domains obtained by 
the present method can be replicated by using fiber models 
in standard computer programs such as OpenSees, provided 
that a suitable procedure is implemented that accurately 
simulates the method proposed herein. For instance, the 
best results with OpenSees are obtained if the limit defor-
mations {eG, kXu, kYu} are evaluated by the present method 
and assigned by means of the “sp” command. Slightly better 
results were found in the authors’ comparisons by assigning 
the alternative triplet {N, kXu, kYu}. However, the first 
approach should be preferable because in a strength domain, 
the axial force N is a natural unknown.

Comparison of results for prestressed cross sections
Several results concerning prestressed cross sections have 

been presented recently by Marmo et al.40 Although all the 
cross sections considered by the quoted authors can be easily 
analyzed by the present method, for the sake of brevity, only 
the Y section shown in Fig. 8 will be discussed herein. The 
material properties, areas, and positions of the ordinary and 
prestressing reinforcement they used are not shown herein for 
the sake of brevity but may be found in Tables 4 through 6 on Fig. 6—L-section considered by Fafitis.28

Fig. 7—Cross sections of strength domain for reinforced concrete section of Fig. 6: (a) 
comparison with results by Fafitis28; and (b) relative error.
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page 98 of their paper. Obviously, the strength domain for the 
considered cross section is a three-dimensional (3-D) surface 
(Fig. 9), but only the 12 cross sections at constant N given 
by the authors are shown here to simplify the comparison 
(Fig. 10). The figure is split into two parts to avoid exces-
sive curve crossing and to maintain each curve as distinc-
tive as possible. The continuous curves refer to the results 
obtained by the present method while the discrete dots are 
values provided by the quoted authors. The agreement can be 
considered good, albeit not perfect, but the limited number of 
points provided by Marmo et al.40 is indicative of the minor 
computational effort required by the present method.

STEEL SECTIONS ENCASED IN CONCRETE
The purpose of this section is twofold. On one hand, it 

wants to show how the presented method can be used to 
deal with common technological situations such as steel 
sections encased in concrete or even tubular steel41-43 and 
FRP sections filled with concrete44; on the other hand, 
it wants to show how relevant the appropriateness of the 
constitutive law for concrete is on the obtained results. To 
this purpose, a cross section is used (Fig. 11), previously 
considered by Leon and Hajjar,42 to illustrate the application 
of the 2005 AISC Specification. However, in the applica-
tion presented herein, the specifications of Eurocode 4 for 
composite steel and concrete structures are used for the 
material parameters instead of the AISC ones. Eight cross 
sections of the 3-D strength domain with constant axial force 
planes are shown with solid lines in Fig. 12. The constitutive 
law prescribed by Eurocode 47 has then been changed by 
replacing the rectangular part of the stress diagram (–afcd 
= –20.68 MPa [–3 ksi]) by a softening branch with ultimate 
strain ecu = 0.004 and ultimate stress scu = –bfcd = –12.7 MPa 
(–1.84 ksi). These parameters were evaluated using the 
Kent and Park37 law for unconfined concrete. The results 
are shown with broken lines in Fig. 12 and are significantly 
different from the previous ones, leading to the conclusion 
that the constitutive law should be consistent with the appli-
cation considered. Furthermore, it appears that for tensile 
axial forces, no significant difference appears between the 
two constitutive laws if not in the case of bending around the 
minor axis (MX = 0), due to the fact that the contribution of 
the encased steel section is less effective. As the compres-
sive axial force becomes larger and larger, the strength 
domain tends to shrink more and more. Most interesting is 
the fact that the strength reduction is more pronounced along 
the principal axes of bending and is minimal along lines of 
biaxial bending of nearly equal components.

Besides the Kent and Park37 law for confined concrete, 
another constitutive law has been formulated for concrete 
confined by FRP45,46 and applied to the derivation of strength 
domains.47 Such laws and similar ones can be handled effi-
ciently by the present method.

STRENGTH REDUCTION FACTORS AND  
INSTABILITY EFFECTS

The strength domain constructed with the method described 
in the previous paragraphs is dependent on the geometry and 
the material properties of the cross section considered. Its use 
for design purposes requires modifications that account for 
different levels of uncertainty associated with failure modes 
(compression-controlled, intermediate, tensile-controlled) 
and for local and global geometrical effects related to the 
member and the structure to which the cross section belongs. 
Briefly, the different uncertainties related to the failure modes 
are accounted for, in codes such as ACI 318-084 (Chapter 9), 
by the so-called strength reduction factors, while the geomet-
rical effects are considered via the moment magnifier design 
procedure (ACI 318-08,4 Chapter 10). This is a method that 
enables to account indirectly for geometric nonlinear effects 
by empirically increasing the bending moments obtained by 
a linear analysis. This is a difficult and controversial topic 
because such empirical amplifications could be avoided 
altogether if member forces were to be determined through 
a complete material and geometric nonlinear analysis. 
However, such analyses are usually expensive both in terms 

Fig. 8—Y-section considered by Marmo et al.40

Fig. 9—Three-dimensional strength domain for reinforced 
concrete section of Fig. 8.
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of human expertise and computational effort, making the 
empirical relations embedded in the codes the most effective 
and reliable alternative.

CONCLUSIONS
An exact method for the construction of the strength 

domain of reinforced concrete and of prestressed concrete 
sections has been presented. The method is direct and does 
not require iterative procedures. Therefore, it does not 
exhibit accuracy and convergence problems often shown 
by methods attempting to solve nonlinear algebraic equa-
tions. The strength domain can be used to check the safety 
conditions of the cross section, especially to see whether 
code requirements are satisfied. Therefore, it appears to be 
an extremely useful and simple tool to be used in design. The 
present method makes the construction extremely simple, 
quick, and accurate, therefore encouraging its application. 
If in the design process it is found that one or more loading 
conditions violate the code requirements, the section must be 
redesigned with a consequent change of the strength domain; 
this, however, can be reconstructed with little effort via the 
present method and the optimal design may be achieved via 
a trial-and-error procedure.

The strength domain evaluated with the present method 
has been checked against several results available in the 
literature. In some cases, the agreement has been excellent; 
in other cases, the agreement has been generally good, but 
with some exceptions suggesting numerical problems in the 
methods used in the literature to derive those results. In a 
few other cases, the comparison has shown some significant 
disagreement, probably due to the preliminary nature of the 
results considered and/or the inappropriate setting of the 
accuracy and convergence parameters. The present method 
can be implemented in any software that uses fiber models 
for the discretization of the cross section. The method can 
be used efficiently to provide the deformation triplet, which 
corresponds to a point on the boundary of the strength 
domain in the stress resultants’ space. The evaluation of the 
corresponding triplet of strength resultants requires only the 
integration over the cross section of the stresses specified in 
terms of appropriate constitutive laws from the prescribed 
limit deformations. This has been applied in the present 
work by using OpenSees.
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