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ABSTRACT  

The paper addresses the issue of the evaluation of a reference axis which in multi-storey 
buildings can play the same role as the elastic centre in one-storey schemes. In this regard the 
Authors propose an improvement to the procedure previously suggested by Makarios and An-
astassiadis for the evaluation of the position of the optimum torsion axis. The above-
mentioned researchers based their evaluation on a parametric analysis of asymmetric frame-
wall systems and thus defined the location of the optimum torsion axis only approximately. 
The Authors, instead, face the problem from an analytical point of view and propose mathe-
matical expressions that rigorously define the position of the same axis. Some examples are 
finally reported aiming at comparing the two approaches and highlighting the improvements 
brought by the rigorous approach to the approximate determination of the location of the op-
timum torsion axis. 
 
 
 
INTRODUCTION 

In order to estimate the effect of the lateral-torsional coupling on the seismic response of in-
plan irregular systems, building codes [3], [10], [13] generally propose two different design 
approaches, based on static and modal analyses respectively. The use of the first approach is, 
however, only allowed with reference to a restricted category of buildings, which, even if dif-
ferently described by codes, are commonly characterised by mass and stiffness distributions 
quite uniform in elevation. Such a limitation is due to the difficulty in extending to generic 



multi-storey systems the static design procedures widely and thoroughly studied in the past 
for one-storey systems. According to the above-mentioned methodology the correction of the 
standard static analysis is performed by means of the introduction of fictitious storey torsional 
moments [1], [2], [12] basically defined as a function of the structural eccentricity, i.e. of the 
distance from the centre of mass to the centre of rigidity. The determination of this last point 
does not generate any problem in one-storey systems. Indeed, as remarked by several re-
searchers [5], [11], in such structures the centre of rigidity, rigorously defined as the point of 
the floor through which a static force (of arbitrary magnitude and direction) must be applied 
to cause the deck to translate without torsion [5], always exists. The same location, further-
more, also individuates the point (named shear centre) through which the resultant of the sto-
rey shear forces passes when the floor is subjected to translation. In addition, the position of 
the centre of rigidity also coincides with that of the point (named centre of twist) that remains 
stationary in plan when the structure is subjected to torque loading. As a result, with reference 
to one-storey systems the terms “centre of rigidity”, “centre of twist” and “shear centre” may 
be used interchangeably and identify a single point in plan, which is called elastic centre [6]. 
Finally, the position of such a point is load independent, since there is a single load resultant 
acting in one-storey structures.  

On the contrary of what has been stated with reference to one-storey systems, the determina-
tion of the centre of rigidity may cause some serious problems when dealing with multi-storey 
buildings. In this regard, let us consider a generic multi-storey system endowed with rigid 
floors, sustained by vertical resisting elements. Considering as degrees of freedom of the ith 
deck the floor rotation θz and the horizontal displacements ux and uy of a point on the floor 
along two perpendicular directions, the mathematical expression that establishes the existence 
of the centres of rigidity (and, in the affirmative, defines their coordinates) leads to the follow-
ing relations [5]: 
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where xR and yR are square matrices containing the unknown coordinates of the centre of ri-
gidity and Kij sub-matrices of the building stiffness matrix: 
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Unfortunately, although the inverse matrix of Eqs.(1a-b) can always be calculated, xR and yR 
are not always diagonal. If such last matrices are not diagonal, and this is a very common case 
in practice, the centres of rigidity, as previously rigorously defined, do not exist. As a conse-
quence, also the elastic centre, which must satisfy the properties of the centre of rigidity, of 
twist and those of the shear centre, does not generally exist in multi-storey buildings. 



In such systems points similar to the centre of rigidity may be still identified by means of a 
slight modification of the above-mentioned corresponding definition, i.e. as points of the 
decks at which the application of a given distribution of horizontal forces does not cause rota-
tion of the floors. As also reported by Tso [11], in order to avoid confusion with the rigorous 
centres of rigidity, such points are referred to later as the generalised centres of rigidity. As 
clearly reported by Hejal and Chopra [5] their coordinates may be evaluated by means of the 
expressions: 
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being 1ˆ −Fx  and 1ˆ −Fy  the diagonal matrices of the lateral load vectors Fx and Fy and Rx  and 
R
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the vector forms of the diagonal matrices xR and yR of Eqs.(1a-b). 

The development of the products in Eqs.(3a-b) leads to the identification of an important 
characteristic of the generalised centres of rigidity. Indeed, as evident from the following rela-
tions [8], the coordinates of the generalised centre of rigidity of the ith storey (being N the total 
number of storeys) may be considered as the sum of two contributions: 
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The first quota is constituted by the diagonal term of the matrices xR and yR and is independ-
ent of the distribution of the horizontal forces. The second, instead, contains the non-diagonal 
terms of the same matrices multiplied by the ratios of the external forces and is therefore re-
sponsible for the dependency of the position of the generalised centres of rigidity on the dis-
tribution in elevation of the horizontal loads. Obviously, as a general rule, the more relevant 
the weight of the diagonal terms of xR and yR with respect to the non-diagonal ones the closer 
the coordinates of the generalised centres of rigidity to the values of the diagonal terms (note 
that these elements would represent the coordinates of the rigorous centres of rigidity if all the 
non-diagonal terms were equal to zero). Nevertheless, if remarkably non-uniform distribu-
tions of forces are considered, the contribution of the non-diagonal terms of xR and yR to the 
determination of the generalised centres of rigidity may be greatly amplified by very high 
values of the external load ratios. In this case, even when diagonal elements prevail on the 
others the coordinates of the generalised centres of rigidity may be very different from the di-
agonal terms of the matrices xR and yR. 

In the past, analytical studies [5] have shown that, in general, also the shear centre as well as 
the centre of twist do not exist in multi-storey buildings, i.e. they cannot be evaluated, accord-
ing to their rigorous definitions, with reference to any set of static forces or torsional couples, 



respectively. Nevertheless, also in these cases, analogous points may be determined in relation 
to a specified distribution of external lateral loads, so defining the generalised shear centre 
and centre of twist. However, it must be observed that, even if referred to a particular set of 
horizontal forces, generalised centres of rigidity and twist and the generalised shear centres do 
not usually coincide. In particular, the generalised centres of rigidity seem to be much more 
sensible than the other generalised reference points to the external load distributions. 

In spite of this, several researchers [5], [11] identified a special class of systems  (buildings 
having vertical resisting elements with proportional stiffness matrices) in which the general-
ised centres of rigidity and twist and the generalised shear centre are lined up along a unique 
vertical axis and are independent of the lateral load distribution. Such structures are character-
ised by generalised reference points coinciding with the rigorous ones and thus by the exis-
tence of the elastic axis. In addition, if masses are defined by centres aligned along a vertical 
axis and by radius of gyration equal at all the floors, such buildings are called regularly 
asymmetric systems [5], [9] and are characterised by a single value of the structural eccentric-
ity and of the uncoupled torsional to lateral frequency ratio. In such systems the effect of the 
lateral-torsional coupling on the elastic seismic response may be evaluated by means of an 
idealised one-storey system, having the same structural eccentricity and uncoupled torsional 
to lateral frequency ratio as the multi-storey building. It comes out from such a consideration 
that, strictly speaking, the static design procedures, developed with the aid of the idealised 
one-storey model and aiming at correcting its elastic seismic response, would have to be ap-
plied to such a category of multi-storey systems only. 

Unfortunately, real asymmetric structures rarely fulfil the strict conditions that characterise 
the above-mentioned buildings. Although many multi-storey buildings present only a slight 
non-proportionality between the stiffness matrices of the vertical elements, a rigorous identi-
fication of the elastic axis is impossible. The same consideration applies to any valid reference 
axis. Furthermore, the position of the generalised reference points often varies so remarkably 
from one storey to the other [4], [6]that a rational determination of an axis of the generalised 
reference centres, representative of the plan-asymmetry of the whole building, is very diffi-
cult. This implies that in real, common buildings, even when mass distributions fulfil the 
properties of regularly asymmetric systems, the equivalent static method proposed by codes 
generally cannot be used if procedures devoted to the definition of the reference axis location 
are not clearly stated. 

An interesting solution to the problem has in the last years been proposed by Makarios and 
Anastassiadis [6] who suggested using, as a reference for the calculation of the structural ec-
centricity, the optimum torsion axis, defined as the vertical line that joins the points of the 
floors where the equivalent seismic forces must be applied in order to minimise the sum of the 
squares of the deck rotations. In their own proposition the above-mentioned researchers de-
fined the location of such an axis by means of an approximate method, the validity of which is 
based on a parametric analysis of asymmetric frame-wall systems. This paper now faces the 
same problem from an analytical point of view with the aim of proposing the mathematical 
expressions which, with precision and scientific rigour, define the position of the optimum 
torsion axis. Some examples are furthermore reported to compare the two approaches and to 



identify the improvements brought by the rigorous approach to the approximate determination 
of the location of the optimum torsion axis. 

THE OPTIMUM TORSION AXIS 

On the basis of observations similar to those briefly reported in the previous section, some 
years ago Anastassiadis and Makarios strictly denied the possibility of using the generalised 
centres of rigidity, twist and shear centres as a reference for the definition of the structural ec-
centricity in multi-storey buildings. With the aim of providing for the lack of reference points 
equivalent to the elastic centre the same authors generalised the concept of the elastic axis de-
fining the optimum torsion axis [6]. Such an axis always exists and coincides with the elastic 
axis when the latter exists. Furthermore, on the contrary of what has been stated with refer-
ence to the centres of rigidity, its position is only a little influenced by the distribution of the 
horizontal forces. The concept of the optimum torsion axis quite naturally results from the ex-
amination of the response of a multi-storey system undergoing the action of a given distribu-
tion of horizontal forces disposed along a vertical plane. Indeed, if the elastic axis exists the 
determination of the position of the loading plane able to nullify the deck rotations is always 
possible. Instead, if the elastic axis does not exist, a position of the loading plane may be 
found which minimises the deck rotations of the building. This occurs when the following ex-
pression is satisfied: 
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Such a relationship constitutes the mathematical representation of the optimum torsion crite-
rion, which states that the torsion of a building is optimal when the sum of squares of the deck 
rotations is minimal. Owing to the nature of the function to be minimised, the minimum is al-
ways greater or equal to zero: in particular, the equality to zero is satisfied only in the pres-
ence of asymmetric buildings having an elastic axis. 

Approximated evaluation 
In their own studies [6], [7] do not face the problem of the rigorous mathematical treatment of 
Eq.(5), considered by the same researchers as “practically impossible due to the great variety 
and complexity of multi-storey building structures”. Alternatively, with the aim of proposing 
an approximate method for the calculation of the position of the optimum torsion axis, they 
carry out a parametric analysis of frame-wall systems. In particular, they analyse systems (re-
ferred to as regular) in which the geometrical and mechanical characteristics of the sub-
structures remain constants or present a smooth variation along the height of the model. From 
this investigation Anastassiadis and Makarios highlight that when the minimum of Θ is at-
tained the deck rotation varies along the height from positive to negative values, being null at 
a level zo contained in a narrow range of values (from about 0.75 to 0.85 times the height H of 
the building). This observation leads the same researchers to the simplified formulation of the 
optimum torsion criterion, according to which the torsion of the building is optimal when the 
nullification of the deck rotations takes place at the level zo = 0.80 H, approximately. 



On the basis of the above-mentioned formulation, an important property of multi-storey build-
ings allows the identification of the approximated position of the optimum torsion axis by 
means of an easy analytical procedure. With the aim of demonstrating such a statement with 
reference to a generic multi-storey building, let two sets of external loads applied to the decks 
of the same system be considered: the first F constituted by horizontal forces 1 2, , , NF F F  be-
longing to a vertical plane and the second M constituted by torsional couples such that 

1 11= ×M F , 2 21= ×M F , , 1N NM F= × . Owing to a reciprocity proposition (extensively reported 
by Anastassiadis and Makarios [6]), at any floor of the above-mentioned generic system the 
deck rotation Fi ,θ  caused by the forces F is numerically equal to the component of the dis-
placement Miu , , due to the couples M, along the trace of the loading plane on the deck. Hence, 
it immediately results that if a point of the deck does not undergo any displacement when the 
building is subjected to the couples M (i.e. the point under consideration is a twist centre) the 
deck does not undergo any rotation when the building is subjected to the forces F applied to 
any vertical plane passing through this point. Therefore, the optimum torsion axis, as defined 
in the simplified formulation, coincides with the vertical axis passing through the centre of 
twist of the deck characterised by a level equal to 0.80 H, approximately. 

Furthermore, rotating the plane of the forces F around this axis the deck rotation at level 
0.80 H is always zero while Θ  shows a little oscillation around the value relative to the direc-
tion first considered. As a direct consequence of the reciprocity proposition, being defined as 
Pi the intersections of the optimum torsion axis on the decks, also the mean of the sum of 
squares of the displacements of the points Pi produced by the application of the couples M 
highlights some variation, as a function of the direction of the plane on which the displace-
ments are projected. 

EXACT EVALUATION OF THE OPTIMUM TORSION AXIS 

While Anastassiadis and Makarios propose to determine the position of the optimum torsion 
axis by using the above-mentioned simplified criterion, the validity of which is sustained by 
the results of a numerical parametric analysis, the Authors demonstrate that the exact position 
of the same axis can be obtained by means of two analytical approaches characterised by dif-
ferent good qualities. The first, which provides analytical formulas based on the manipulation 
of matrices that define the stiffness properties of the structure, will be called the analytical 
approach. The second, which involves the evaluation of the static response of the building to 
the seismic forces, will be called the numerical approach. Both methods are easily applicable 
to generic asymmetric multi-storey buildings endowed with rigid floors sustained by resisting 
elements (frames, walls, etc.), also when arranged along non-orthogonal directions. 

Analytical approach 
Given an orthogonal reference system 0XYZ, having X and Y axes parallel to the principal 
axes of the resisting elements, let the degrees of freedom of the system be defined by the deck 
rotations θz and by the horizontal displacements ux ed uy along the coordinate axes of the in-
tersections of the vertical axis on the decks. Let Fy represent a set of horizontal forces belong-
ing to a vertical plane parallel to the Y-axis and intersecting the X-axis at a position x. The ef-
fect of Fy on the structure is equal to the sum of two quotas: the first determined by the forces 



Fy applied at the intersections of the vertical Z-axis on the decks and the second determined 
by a distribution of torsional moments acting on the floors and having intensity equal to x Fy. 
The equations of equilibrium of the system are: 

 xx x xy y x zθ+ + =K u K u K 0θ  (6a) 

 yx x yy y y z yθ+ + =K u K u K Fθ  (6b) 

 x x y y z yxθ θ θθ+ + =K u K u K Fθ  (6c) 

where Kij represents the different sub-matrices of the building stiffness matrix K. 

Obtaining ux from Eq.(6a) and substituting into Eqs.(6b) and (6c), the previous equations of 
equilibrium can be rewritten as follows: 
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Hence, remembering the particular form of the xR matrix shown by Eq.(1a), we can transform 
Eq.(7b) in: 
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and Eq.(7c) in: 
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Furthermore, owing to the symmetry of the building stiffness matrix K, the Kij matrices fulfil 
the conditions: 
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and thus, from simple mathematical operations: 
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Substituting Eq.(11) in Eq.(9) leads to: 
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and, hence, to the deck rotations: 

 ( )1 T
z 1 R y

−= −A I x Fθ x  (13) 

being I the unit matrix and: 
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The inverse matrix A1
-1 must always exist because Eq.(12) admits a unique solution in terms 

of deck rotations θz. Furthermore, being symmetric matrix A1 also the inverse matrix A1
-1 is 

symmetric. 

The square of the deck rotations is therefore: 
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where 1 1
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But, owing to the equality: 

 T T T
y R 1 y y 1 R y=F x B F F B x F  (16) 

Eq.(15) may be written as: 

 T 2 T T T T
y 1 y y 1 R y y R 1 R y2x xΘ − += F B F F B x F F x B x F  (17) 

Eq.(17) shows that the sum of squares of the deck rotations depends on x by means of a para-
bolic law. Furthermore, because the function Θ assumes positive values only and the parabola 
turns the convexity to the X-axis (Appendix A) the minimum of Θ is obtained in correspon-
dence of the abscissa: 
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Analogously to what was previously described we can obtain, with reference to horizontal 
forces acting along the X-direction, the coordinate of the intersection of the loading plane on 
the Y-axis which minimises the sum of squares of the deck rotations: 
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It can be also easily demonstrated that when the resisting elements are arranged along the two 
orthogonal axes X and Y, owing to the property Kxy = 0 the xR and yR matrices assume the 
following form: 

 1
R yy y

−
θ=x K K  (20a) 

 1
R xx x

−
θ= −y K K  (20b) 

Hence we obtain: 

 1 1
1 2 x xx x y yy y
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On the basis of the described demonstration it is highlighted that the determination of the ex-
act position of the optimum torsion axis requires only the knowledge of the external reference 
forces and that of the building stiffness matrix. The formulas obtained may be easily imple-
mented on personal computers within structural programs in which the above-mentioned 
quantities are anyway necessary and therefore known.  

Numerical approach 
The procedure shown in the previous section may be awkward to use if it is not implemented 
within structural programs. For this reason a more simple procedure for the exact determina-
tion of the location of the optimum torsion axis has been developed. This more practical ap-
proach starts from the observation that, if the deck rotations produced by the lateral forces Fy 
applied at the origin of the reference system and those caused by torsional couples M = 1 · Fy 
are known, the evaluation of the building stiffness matrix is not explicitly required in order to 
determine the relation Θ(x). In fact, named θFy and θM the vectors containing the two afore-
mentioned sets of rotations respectively, the rotations of the decks produced by the horizontal 
forces Fy acting at a position x may be written as:  

 ( )
yz F Mx x= +θ θ θ

 (22) 

Hence, by multiplying the vector θz(x) by itself we immediately obtain that the sum of squares 
of the decks rotations Θ(x) is a quadratic function of the loading plane position having general 
expression: 
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where the a, b and c coefficients depend on the elastic response of the structure through the 
following relationships: 
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Owing to this, the coordinates of the optimum torsion axis corresponding to the vertex of the 
parabola are: 
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As evident from the previous demonstration, the present method requires only the application 
of three static analyses in order to determine the rotations θFx, θFy, θM. Furthermore, it is to be 
noted that the structural response to any set of horizontal forces may be obtained by linearly 
combining the results of two of the three static analyses previously performed to determine 
the optimum torsion axis. Therefore, it is not necessary to carry out any further static analysis 
to determine the structural response to the design seismic forces, applied according to the de-
sign eccentricities suggested by codes. 

APPLICATIONS 

The location of the optimum torsion axis has been calculated by means of both the approxi-
mated and exact formulations with reference to different types of non-regularly asymmetric 
systems. The typology of buildings first considered (type 1) is endowed with frame-wall 
structures (Fig. 1a). For the sake of simplicity the plan of the systems under consideration, 
rectangular (28.50 × 12.50 m), is supposed to be equal at all floors and the mass hypothesised 
uniformly distributed in plan. The buildings are ten-storeys high and characterised by an in-
terstorey height equal to 3.20 m at all storeys. Frames are shear-type and symmetrically dis-
posed about the coordinate axes; walls, instead, are constituted by two couples of walls (one 
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Figure 1. Plan of non-regularly asymmetric buildings. 
(a) frame-wall system (type 1), (b) framed system (type 2) 
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for each direction) characterised by a radius of gyration of stiffness constant at all storeys and 
equal to 2.25 m. The rigidity of the frames, distributed in plan as shown in Figure 1a, is one 
half of the value that, in the corresponding torsionally balanced frame structure, determines a 
first translational period of vibration of 1 s. On the basis of such a result, the dimensions of 
the walls have been calibrated so that the torsionally balanced coupled wall-frame system has 
the first translational period of vibration equal to 1 s. With the aim of covering small, moder-
ate and quite high values of structural eccentricity of the whole system (frames plus walls), 
the distance from the centre of rigidity of the walls to the centre of mass has been gradually 
increased at all storeys from 0 to 10 m (0-35 % of the floor dimension along the X-axis). 

The second typology (type 2) of non-regularly asymmetric buildings has instead a structure 
constituted by shear-type frames only (Fig. 1b). Both the geometry of the buildings and the 
characteristics of the mass are equal to those already described for the first typology of sys-
tems. But, differently from the previous schemes, in these all frames have the same lateral 
stiffness. The dimensions of the resisting elements and the geometrical distribution of the 
frames are such that, at this stage of the design process, the systems (which are still symmet-
ric) are characterised by a first translational period of vibration of 1 s and by a torsional to lat-
eral frequency ratio equal to 1. In such configurations the asymmetry has been introduced by 
reducing the stiffness of some frames (to one sixth of the original value) at some storeys only. 
In particular (Fig. 2), in a first set of systems the reduction of rigidity is produced in the ele-
ment number two, in correspondence to one storey only; such systems are defined as sub-type 
Ai, being i the storey where the reduction in stiffness takes place. A second system has been 
obtained by reducing the stiffness of the element number two at the eighth and ninth storeys 
contemporarily (sub-type B). Finally, in a third system the reduction of stiffness has been ap-
plied to the element number one at the eighth storey and to the element number two at the 
ninth storey (sub-type C). These last two schemes have been conceived so as to worsen the 
prediction of the optimum torsion axis obtained by means of the approximated formulation, 
the reliability of which is strictly related to the approximation of the centre of twist at 80% of 

 
 

sub-type A* sub-type B* sub-type C* 

 Frame 2 

k 

k/6 ith storey 

k 

k 

k 

k 

 

 Frame 2 

k 

k/6 8th storey 

k/6 

k 

k 

k 

9th storey 

 Frame 1 

k 

k/6 8th storey 

k 

k 

k 

k 

Frame 2 

k 

k 

k/6 

k 

k 

k 

9th storey 

 
* Frames non represented in figure have translational stiffness equal at all storeys. 

 
Figure 2. Systems type 2: irregularities in the distribution of lateral stiffness (k) between frames. 



the total height of the building to the real position of the optimum torsion axis. 

The results of the analyses performed on the above-mentioned systems suggest some interest-
ing considerations. First of all, the location of the centre of rigidity (shown in Figs. 3 and 4 
with reference to a triangular distribution of horizontal forces) highlights remarkable differ-
ences along the height of the systems, belonging to either the first or the second typology of 
buildings. As already affirmed by other authors [6], [8], [12], its sensitivity to even low values 
of structural eccentricity and its variation with the load distribution (not shown in figure) 
bring us to think that it is not apt to represent a valid reference point for the application of the 
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Figure 4. Position of the reference points: framed systems (type 2) 
(a) sub-type A8: reduction at the eighth storey; (b) sub-type A9: reduction at the ninth storey; 

(c) sub-type B; (d) sub-type C. 
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Figure 3. Position of the reference points: frame-wall systems (type 1). 
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Figure 6. Approximated and exact positions of the optimum torsion axis: systems type 2 (sub-type A).
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Figure 5. Approximated and exact positions of the optimum torsion axis: systems type 1. 
 

static analysis to non-regularly asymmetric buildings. At the same time the centre of twist 
seems to be only a little sensitive to the type of structural irregularity (being continuous or 
concentrated) or to the lateral load distribution and often quite close to the optimum torsion 
axis. 

The difference between the approximated and exact position of the optimum torsion axis is 
finally shown in Figures 5 and 6 with reference to the schemes under examination. In the 
frame-wall systems (Fig. 5) the position of the optimum torsion axis seems to be well evalu-
ated by the approximate procedure with an error close to 10%, whatever the value of the 
structural eccentricity of the walls. Nevertheless, it should be noted that, although the distance 
of the centre of rigidity of the walls from the centre of mass is increased up to 35 % of the 
floor dimension along the X-axis, the results of such analyses correspond to small values of 
the eccentricity of the optimum torsion axis only (not greater than 6.25% of the floor dimen-
sion). 

Greater differences between the approximated and exact evaluations of the position of the op-
timum torsion axis are obtained from the study of buildings belonging to type 2, characterised 
by concentrated reductions of rigidity. For such systems (sub-type A) Figure 6 shows that the 
error depends on the storey where the reduction of rigidity has been applied, varying from 
about 20% to 100%. In particular, the numerical analyses highlight that the approximated 



formulation predicts null structural eccentricity when the variation of rigidity applies to a sto-
rey higher than the eighth, while the correct formulation identifies structural eccentricities that 
can determine, owing to their values, non-negligible variations in the response. Conversely, 
quite low errors are noticed if the reduction of rigidity is considered at the lower storeys. 

Obviously, also for systems with asymmetry sub-type B and C the numerical analyses high-
light relevant errors, equal to 20% and 248% of the exact value respectively (in these cases 
the approximated structural eccentricity is greater than the correct value). In spite of this, the 
Authors remark that sometimes, in particular for the last value, relevant errors occur because 
of the low values of the exact structural eccentricity. Nevertheless, by means of the results of 
the presented examples they also want to underline that configurations exist that are not very 
apt to be well analysed by means of the approximated method and that often the differences in 
the position of the optimum torsion axis may be so great as to determine serious underestima-
tions in the structural response. 

CONCLUSIONS 

In this paper the Authors address the problem of the exact evaluation of the position of the op-
timum torsion axis, which constitutes one of the essential elements for the study and design of 
non-regularly asymmetric multi-storey buildings. The study proposes itself as a refinement of 
a previous research carried out by Anastassiadis and Makarios who, on the basis of a paramet-
ric analysis of frame-wall systems, have in the past proposed an approximate evaluation of the 
position of the same axis. 

Two exact procedures, characterised by different good qualities, are presented to reach the 
same goal. 
 

− The first requires the knowledge of the building stiffness matrix and is, for this reason, 
particularly useful if implemented within a structural program (where such data are al-
ready available). 

− The second is based on the results of three static analyses and is therefore easily appli-
cable even if structural programs do not allow the previous analytical evaluation.  

By means of some examples the Authors demonstrate that great differences between the ap-
proximated (proposed by Anastassiadis and Makarios) and exact evaluations of the position of 
the optimum torsion axis are possible and that, therefore, the application of the proposed pro-
cedure is in general desirable. Nevertheless, they also show that in some systems, similar to 
those considered by Anastassiadis and Makarios in their research, the two methods may give 
analogous results. 

Finally, the Authors want to underline that the examples contained in this paper are not in-
tended to cover all possible cases of non-regularly asymmetric structures. The selected sys-
tems only want to constitute a limited basis of less or more realistic structural schemes, of 
relevant interest for the application of the described approximated and exact procedures. 



APPENDIX A 

Owing to the symmetry of matrix -1
1A  the eigenvalues of such a matrix must be real. Further-

more, the inverse matrix of -1
1A  always exists and thus such eigenvalues must be also all dif-

ferent from zero. An orthogonal matrix P exists such that: 
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in which λ1, λ2 .. λn are the eigenvalues of -1
1A . 

 

If we multiply the matrix -1
1A  by itself we obtain: 
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Therefore, the eigenvalues of the matrix B1 are all real and positive and thus the quadratic 
form T

y 1 yF B F is always positive, whatever the vector of forces Fy is. Consequently (see 
Eq. 17), the convexity of the parabola under examination is turned to the X- axis. 
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