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ABSTRACT 

In the eighties Chopra demonstrated that the dynamic behaviour of a special class of in 
plan irregular buildings, named regularly asymmetric systems, may be obtained by cou-
pling the results of a modal planar analysis to the normalised torsional response of a 
single-storey system. As a result of this observation the design procedures developed us-
ing single-storey systems (i.e. the simplified analysis of torsional effects proposed in 
many codes) may be used for multi-storey structures belonging to this special class. In 
spite of the fact that real structures are generally non regularly asymmetric systems de-
signers apply approximated methods of analysis basing on their intuition. In order to de-
fine clear limits in the application of simplified methods of analysis, two parameters of 
irregularity are defined in the paper and their correlation with the maximum error due 
to the application of the aforementioned methods is investigated.  

INTRODUCTION 

The use of static analysis has been firstly conceived for plane frames, basing on the ob-
servation that, for such schemes, the distribution of forces corresponding to the first vi-
bration mode is not so much different from a triangular one. Much more questionable is 
the application of static analysis to three-dimensional schemes, the dynamic response of 
which presents torsional rotations inconsistent with plane models. The analysis of the 
modal response of single-storey spatial schemes suggested a simple way for safely evalu-
ating the displacements of the deck: the use of eccentricities in the application of static 
forces, calibrated in such a way as to catch the dynamic increase of torsional rotation 
[2], [4]. Simplified formulations of these eccentricities have been included in most seis-
mic codes [5], [11], [12]. In the eighties Chopra demonstrated the validity of this ap-
proach for a particular class of multi-storey buildings, named “regularly asymmetric”. 
Their dynamic behaviour may be exactly described by coupling the results of a modal 



planar analysis to the normalised torsional response of a single-storey system [1]. Thus it 
is also possible the use of static analysis, provided that static forces are applied with ec-
centricities defined for the single-storey coupled system. Unfortunately, very few build-
ings strictly respect the conditions required for being defined regularly asymmetric, be-
cause structural properties (as the location of centre of mass CM, centre of rigidity CR 
and the radius of gyration of mass rm and stiffness rk) often vary from one floor to an-
other. Nevertheless, static analysis is commonly applied to buildings that present some 
irregularities, basing on the intuition that a small non-correspondence to the theoretical 
requirements cannot dramatically modify the behaviour of a building. Intuition is, 
doubtlessly, a powerful tool of the human kind but, if we accept this, which is the limit? 
How can we define a level of irregularity that makes reliable the use of static analysis? 
This paper tries to answer these questions, proposing a parameter that numerically de-
fines in-elevation irregularity and showing how it is related to the errors committed in 
the evaluation of the seismic behaviour by means of simplified analyses. 

ANALYSIS OF REGULARLY ASYMMETRIC SYSTEMS 

In regularly asymmetric systems the in-plan distribution of the maximum displacements 
at each floor, evaluated by means of spatial modal analysis, describes proportional 
curves (Fig. 1a). The ratio of these displacements over those of the corresponding bal-
anced system (Fig. 1b) gives the same curve at each floor (normalised displacements, 
Fig. 1c). Consequently a single-storey system that describes the effects of lateral-
torsional coupling exists [1], [10]. Planar modal analysis of the balanced system, cor-
rected by means of the normalised response of the corresponding single-storey asym-
metric system, can be utilised, obtaining the same results of the spatial modal analysis. 
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Figure 1. Application of modal analysis to a multi-storey regularly asymmetric system

(Ωθ=1.0; Ty=1 s; es=0.10 L) 
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Figure 2. Application of corrected static analyses to a one-storey asymmetric system 
(Ωθ=1.0; Ty=1 s; es=0.10 L) 

The maximum modal displacements of both flexible and stiff side of the single-storey 
system may be evaluated by means of two static analyses (Fig. 2) with appropriate ec-
centricities ed1 and ed2 [2], [4]. Using the same eccentricities in the static analysis of the 
three-dimensional scheme, we obtain displacements of the regularly asymmetric struc-
ture (Fig. 3a) that, when normalised with respect to those represented in Fig. 1b, give 
curves that slightly differ from one floor to another (Fig. 3b). Consequently, the cor-
rected static analysis is conservative in the upper floors, while in the lower floors it gives 
values closer to those of the modal analysis (Fig. 3c). These small differences are con-
nected to the different distribution of forces applied in the case of modal or static analy-
sis. Note that the comparison has been carried on using the same base shear in the two 
approaches, as some seismic codes suggest, in order to avoid larger differences 
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Figure 3. Application of corrected static analysis to a multi-storey regularly asymmet-

ric system (Ωθ=1.0; Ty=1 s; es=0.10 L) 



ANALYSIS OF NON REGULARLY ASYMMETRIC SYSTEMS 

Equivalent Single Storey System 
Every regularly asymmetric building is characterised by some properties, which are 
necessary for defining the correspondent single-storey system: it has an elastic axis; the 
mass centres of all the floors are lined up in vertical; the radius of gyration of stiffness 
and that of masses do not vary along the height [1], [10]. Unfortunately, in most actual 
buildings the in-plan distribution of stiffness varies from one storey to another. As a 
consequence, they do not have an elastic axis and different positions of generalised cen-
tres of rigidity, twist and shear centres may be evaluated, depending on the distribution 
of the horizontal actions used for the calculation [2], [4], [6], [9], [13]. In order to indi-
viduate a correspondent single-storey system, it is possible to refer to the optimum tor-
sion axis proposed by Anasthassiadis et al. [7], defined as the vertical line that joins the 
points of the floors where the equivalent seismic forces must be applied in order to 
minimise the sum of the squares of the deck rotations. Such an axis coincides with the 
elastic axis when this one exists; furthermore, its position is only in a minor way influ-
enced by the distribution of the horizontal forces, differently from what observed for 
other reference points (particularly the centre of rigidity) [6], [9]. Regarding the radius 
of gyration of stiffness, in a regularly asymmetric system it is unique and may be evalu-
ated by the following expression, 
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where uFi, θFi are displacement and rotation of the deck of the ith floor produced by a set 
of horizontal forces F and θMi is the rotation of the same deck produced by a set of tor-
sional couples M obtained multiplying F by an eccentricity e1. In irregular buildings, 
this expression gives a different value at each floor. We suggest assuming, as radius of 
gyration of stiffness of the correspondent single-storey system, the mean of the values 
provided by the Eq.(1) at all the floors. Finally, if the mass centres do not lie on a verti-
cal axis or their radii of gyration vary along the height, we may use the mean value of 
these quantities in order to characterise the correspondent single-storey system. It is 
thus possible to evaluate the eccentricities ed1 and ed2 necessary to perform a corrected 
static analysis. Or, as an alternative, we are able to perform a planar modal analysis and 
to correct it by means of the normalised response of the single-storey asymmetric system 
(corrected planar modal analysis). 

Parameters for Measuring the Irregularity along the Height 
With the above-mentioned assumptions, it is possible to evaluate structural displace-
ments and internal actions by means of simplified analyses also for irregular schemes. 
Anyway, it is necessary to know the entity of the errors produced by the use of approxi-
mate methods and to relate it to simple parameters that take into account the level of ir-
regularity. 
In order to find a measure of the irregularity of a structure along the height, two pa-
rameters have been defined with the aim of take into account two different aspects. The 
first parameter comes from the definition of optimum torsion axis, which aims at mini-
mising the sum of the squares of the deck rotations produced by a distribution of lateral 



forces. Noting that this sum is null for regularly asymmetric schemes, for which opti-
mum torsion axis and elastic axis coincide, and greater than zero for irregular schemes, 
we may assume as measure of non-regularity the parameter: 
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where θi is the deck rotation caused by a distribution of forces F applied to the optimum 
torsion axis and N is the number of storeys of the building. 

The effectiveness of the parameter Θ1 is limited by the fact that it is not able to properly 
catch the effect of the variation of radius of gyration of stiffness along the height. E.g., it 
is null for mass-eccentric buildings having stiffness centres lined along the symmetry 
axis but presenting at the same time relevant variation of torsional stiffness at different 
floors [9], [10]. In order to overcome this, we may use a second parameter Θ2, which 
takes into account the vertical irregularity caused by the variation of the radius of gyra-
tion of stiffness. In single-storey systems the translation uF of the corresponding bal-
anced systems produced by a force F and the rotation θM induced by a couple M = F·e1 
may be easily calculated by means of the following expressions: 
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being K the translational stiffness of the system. The deck rotation is thus given by the 
expression: 
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The previous equation, which expresses the rotation of the deck θM in function of the 
displacement uF, is valid for regularly asymmetric systems but not for non regularly 
asymmetric systems. Such observation suggests a second parameter able to quantify the 
vertical irregularity of the buildings. 

In fact, with reference to an actual multi-storey system, restrained the deck rotations, 
the displacements uF,i of the floors due to a distribution of forces Fi may be evaluated. 
Therefore the rotations of deck of the actual building, caused by the application of a dis-
tribution of couples Fi e1, may be evaluated by means of the Eq. (5). The radius of gyra-
tion of stiffness is calculated according to the already-cited formula valid for regular 
asymmetric systems (Equation 1). Only if the analysed building is a regularly asymmet-
ric system, the obtained rotations would be equal to those evaluated applying the couples 
Fi e1 on the spatial model. At the aim of defining a structural parameter able to quantify 
the non regularity along the height the difference between the rotation θM,i produced in 
the examined multi-storey systems by a considered distribution of couples and that 
evaluated by means of the Eq. (5) is calculated at each floor. The sum of the squares of 



such differences has been assumed as measure of vertical irregularity and the parameter 
Θ2 ha been defined as: 
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where the radius of gyration of stiffness rk med,i is the mean value between those obtained 
in the i+1,…,N floors. 

Both indices Θ1 and Θ2 are equal to zero in regularly asymmetric systems and greater 
than zero in non regularly asymmetric systems. 

NUMERICAL MODELS 

In order to validate the use of static analysis for irregular structures, two typologies of 
asymmetric buildings have been considered in the present paper. Irregularity has been 
introduced by means of random but limited modifications of the stiffness of the resisting 
elements of two regularly asymmetric schemes. The structure of the reference systems 
(Fig. 4) presents shear-type frames symmetrically disposed with respect to the x and y-
axes (four in the y-direction and two in the x-direction). All the y-direction frames are 
equal each other in the first scheme, which generate a set of irregular buildings named 
“class A”, while in the second scheme one external frame has rigidity double than the 
others (giving irregular buildings of “class B”). Both schemes have six storeys and pre-
sent x-direction frames equal each other, mass and radius of gyration of mass with the 
same value at all the floors, centres of mass disposed along a vertical axis. 

Starting from these two basic systems, two sets of 1500 irregular buildings have been 
generated, by randomly imposing: 
− the number of resisting elements to be modified, in the range one to six; 
− the storey and position of the elements to be varied (more than one modification may 

occur at the same element); 
− the entity ∆ of the variation of the lateral rigidity of each element, in the range 

−50 % ≤ ∆ ≤ 400 %. 
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Figure 4. Reference systems for class A and class B irregular buildings 



CORRELATION BETWEEN ERROR AND IRREGULARITY 

When a simplified method of analysis is used (corrected static analysis or planar modal 
analysis modified by the normalised response of the single-storey asymmetric system) 
the results do not coincide to those of the spatial modal analysis. The maximum and 
minimum difference (non-conservative and conservative errors) may be plotted versus 
an irregularity parameter Θ, obtaining a couple of points for each analysed building 
(Fig. 5a) and a large number of points for the whole set of buildings (Fig. 5b). These 
points are enveloped with two curves corresponding to 95% fractile (Fig. 5c), which may 
be used form now on to discuss the correlation between error and irregularity, e.g. to de-
termine the value of the irregularity parameter Θ corresponding to a given error 
(Fig. 5d). 

In order to evaluate the different influence of the two parameters Θ1 and Θ2 previously 
defined, subsets of buildings characterised by the same value of Θ2 have been selected 
and the corresponding errors have been plotted in function of Θ1 (e.g. see Fig. 6a). 
Analogously, error has been plotted versus Θ2 for subsets of buildings characterised by 
the same value of Θ1 (e.g. see Fig. 6b). We observed that, in mean, the increase of error is 
more manifest in relation with Θ1, less evident in function of Θ2. For this reason as 
unique parameter of irregularity Θk has been considered, being: 

 21 Θ+Θ=Θ kk  with k=0.5 (7) 
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Figure 5. Correlation between error and irregularity parameter 
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Figure 6. Correlation between error and parameter Θ1 (a) and Θ2 (b) 

ANALYSIS OF THE RESULTS 

The errors committed when evaluating the absolute displacements of class A buildings 
by means of corrected spatial static analysis (Fig. 7a) and planar modal analysis modi-
fied by the normalised response of the single-storey asymmetric system (Fig. 7b) show 
significant differences between the two approaches. The field of application of corrected 
static analysis is larger: e.g., if we accept an error up to 10% static analysis may be used 
for buildings having Θk ≤ 7.0×10-5 while corrected planar modal analysis is valid only up 
to Θk = 1.9×10-5. The figure confirms also the already mentioned fact that regularly 
asymmetric structures (Θk =0) are conservatively analysed by static analysis (results up 
to 6% safe), while corrected planar modal analysis gives exact results (error=0) for these 
schemes. Once again we have to remember that the comparison has been carried on us-
ing the same base shear in the two approaches. 

The errors committed when evaluating relative displacements (Fig. 8), which are pro-
portional to internal actions because all the buildings are composed by shear-type 
frames, are larger but confirm the different range of application of the two approaches. 
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Figure 7. Error committed in the evaluation of absolute displacements: class A buildings 
analysed by means of corrected spatial static analysis (a) and corrected planar modal 

analysis (b) 
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Figure 8. Error committed in the evaluation of relative displacements: class A buildings 
analysed by means of corrected spatial static analysis (a) and corrected planar modal 

analysis (b) 
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in the evaluation of absolute displacements (a) and relative displacements (b) 

Finally, the comparison between the results obtained for class A and class B buildings 
(Fig. 9) confirms once again the differences between the two methods of analysis, but at 
the same time shows that the error committed using corrected static analysis is more 
sensitive to the geometry of the scheme. Further investigation should thus be carried on 
about the influence of the base model; in particular, an important aspect to analyse 
seems to be the effect of the structural eccentricity of the base model. 

CONCLUSIONS 

The paper demonstrates that it is possible to find a correlation between a parameter of 
irregularity and the maximum error connected to the application of approximate meth-
ods of analysis in the evaluation of dynamic response of non regularly asymmetric struc-
ture. This result has a quantitative validity based on the analysis of a large set of build-
ings with random variation of stiffness. Furthermore, the proposed parameter is quite 
simple to be evaluated also in the ordinary professional practice. Basing on these results, 
it will be possible to seismic codes to define clear limits to the applicability of simplified 
approaches, related to the maximum acceptable error and to the level of irregularity of 
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the structure. The performed analyses show that the field of application of the corrected 
static analysis is much larger than that of the planar modal analysis of a balanced sys-
tem, corrected with the normalised displacements of the corresponding single-storey sys-
tem. The field of application of corrected static analysis is slightly different in function 
of the typology of the buildings; for this reason a deeper analysis on the influence of 
structural eccentricity has to be done to generalise the results of this study. 
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