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Abstract

The remarkable effort of the researchers in the last decades has produced on this
subject results which often appear to be contradictory and strictly related to the
structural system or to the structural analysis, either static or multi-modal spatial
analysis, that in the phase of design deeply affects the distribution of strength
among the elements and thus the maximum ductility demand due to inelastic re-
sponse analyses. Both static and multi-modal spatial analysis do not fit well the
elastic and inelastic response of asymmetric buildings, but while static spatial
analysis - without additional eccentricities - underestimates the displacement of
both flexible and stiff edges, multi-modal spatial analysis is able to exactly caich
the elastic response of the flexible edge even if it risks to further on reduce the
design displacement at the stiff edge. The use of multi-modal analysis may com-
ply with the two aims of the seismic design (no collapse under strong events,
damage limitation under seismic actions having a larger probability of occur-
rence), if it is carried out two times separately: the first one with actual mass
distribution to cover peak elastic displacements at the flexible side and the second
one with a design eccentricity to fit inelastic peak displacements at the stiff side.
An idealised one storey building, symmetric about one direction, has been investi-
gated with reference to different values of the parameters influencing the inelastic
response of asymmetric buildings, by using a set of thirty accelerograms selected
among historical Italian seismic events in order to take account of the possibility
of occurrence of earthquakes with elastic response spectrum more or less different
from that of design (mean of the thirty response spectra). The study has been fo-
cused on the assessment of a formulation for the design eccentricity that reduces
the maximum ductility demand (expressed as the mean value and 95% fractile of
the maximum ductility demanded by the thirty accelerogiams) The approach
proposed and the given formulation proved to be effective in foreseeing the effects
of asymmetry on systems having variable values of geometrical and mechanical
parameters, thus providing a design criterion which can limit the ductility demand
of asymmetric schemes without relevant increment of structural costs.
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Inelastic response of asymmetric buildings

Whoever analyses the wide set of papers on this subject will be probably struck by the
apparent necessity of underlining both the complexity of the problem and the discrepancies
among the conclusions of the researchers. In effect, while the elastic seismic behaviour is ruled
by few global parameters (eccentricity between mass and stiffness centres, uncoupled lateral-
torsional frequency ratio and, in a lesser way, petiod of vibration, shape of the response spectrum
and position of mass centre with respect to the edges of the floor deck), the inelastic response
seems to be influenced by location and strength of each resisting element. A considerable effort
is therefore presently devoted to the standardisation of definitions and assumptions and to the
identification and evaluation of the effect of every single parameter. Anyway, we believe
important to put more emphasis on some concordant results of the research; a few general
considerations, which can be found in most papers on this subject, may in fact constitute the
basis for a retrospective analysis of the past work and for the proposition of a design approach
able to limit the negative effects of asymmetry.

At first it must be noted that the conclusions of the researchers seem contradictory mainly
when the attention is focused on the ductility demand, which in different papers is considered to
reach the maximum at the stiff or at the flexible side and to be smallet, comparable or much
greater than the one of the corresponding balanced system. On the contraty, many authors
acknowledge that the inelastic displacements of the elements which constitute a spatial frame are
scarcely dependent on their strength, i.e that different structures, with elements having the same
stiffness but designed so as to offer different strength, present approximately the same peak
displacements. Goel and Chopra 1990 clearly state that “the element deformations of systems
designed according to most building codes are not very different” and Tso and Zhu 1992 affirm
that “the displacement demand is insensitive to the form of torsional provisions adopted” This is
confirmed by the numerical analyses later on described; an example is provided by Figure 1,
which shows the peak displacements of a structural scheme designed with different strength
distributions and behaviour factors, subjected to an Italian seismic recording (Tolmezzo, Friuli,

1976).
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Figure 1 Peak displacements of a stiffness eccentric system subjected to Tolmezzo recording
(design parameters: Qg=1, Ix=Ty=1 5, 1,=0.2, e,~0.05 L) ,
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Figure 2. Peak displacements of a stiffness eccentric system subjected to EI-Centro recording
(design parameters: {27=1 2, Ty=1~1 s)

Secondly, it is often recognised that, while the elastic response of asymmetric schemes
usually shows a larger rotation, if compared to the prediction of static spatial analysis, the
inelastic response is much more translational. According to Goel and Chopra 1990, “yielding
leads to reduced torsional deformation of medium-period and long-period systems, regardless of
their stiffness eccentricity. Thus, if the system is well into the inelastic range, the effects of plan-
asymmetry on system response are small”. A reason for this is that within inelastic response
analyses the eccentricity is not constant, because of the instantaneous variation of position of the
rigidity centre due to the plasticization of the elements. A further cause is the torsional
contribution of orthogonal elements which remain longer in the elastic range, mainly if the
transverse seismic excitation is smaller than the one acting in the primary direction. The
differences between elastic and inelastic response are illustrated by Figure 2, which shows the
peak displacements of a structure subjected to El-Centro recording,

Design of asymmetric buildings

The two aforementioned considerations, joined together, may be considered a generalisa-
tion and a modification of the well known principle proposed in the sixties by Newmark for
elastic-perfectly plastic s.d.o.f. systems. We may in this case affirm that the peak displacements
of asymmetric schemes well into the inelastic range are independent of the global value of
strength and of its distribution among the resisting elements, but they differ from the elastic peak
displacements because of the less marked rotation. This assumption is obviously a simplification
of the actual behaviour, which is valid in the mean but may be violated in single cases, like the
Newmatk principle itself. Nevertheless it proves to be very useful in solving the problem of the
ductility demand because this one may be simply foreseen by comparing the design
displacements to the peak values of elastic and inelastic analyses. When the strength of each
element is assumed proportional to its stiffness, 1.e. only transiation is considered in design, the
maximum ductility is always required at the flexible edge. Also when static spatial analysis -
without additional eccentricities - is used, the elastic displacement of the flexible edge is
underestimated (this is the main reason why some codes prescribe the adoption of an increased
eccentricity); in this case, however, the ductility demand is greater at the stiff side, since the
reduction of design displacements due to the rotation finds no correspondence in the more
translational inelastic behaviour. Finally, the use of multi-modal spatial analysis is able to



properly catch the elastic 1esponse of the flexible edge but risks to further reduce the design
displacement (and increase the ductility demand) at the stiff edge

A proper way to face the problem must not forget the two aims of seismic design (no
collapse under strong events, damage limitation under seismic actions having a larger probability
of occurrence), which in most codes are hidden by the use of an unique value of design action,
provided by the elastic response spectrum divided by a coefficient (behaviour factor g in EC8).
Design displacements should therefore cover peak eclastic values at the flexible side and peak
plastic values (divided by g) at the stiff side. The use of static spatial analysis as reference
method of design, imposed by many codes and followed by nearly all researchers, requires a
double effort (in terms of additional eccentricities) to solve both aspects. The mixing of these
might be one of the reasons for the difficulty in interpreting the results of interesting works. Our
basic assumption has therefore been that the elements’ strength should be proportioned by using
multi-modal spatial analysis with the actual mass distribution, for the flexible side, and with a
design eccentricity (i e. a displacement of the centre of mass towards the centre of rigidity) for
the stiff side. The present paper shows how such design eccentricity is related to the elastic
characteristics and to the mass distribution of the scheme, providing a thorough formulation
which allows to reach the proposed goal. The design procedure, based on multi-modal spatial
analysis, and the related formulation could be a strong basis for an improvement of the torsional
provisions of Eurocode 8, as it is shown in a more detailed way in a companion paper (Calderoni
et al. 1996) It is obviously important that the seismic code allows the designer to use static
spatial analysis, but the equivalence of static to multi-modal analysis must be considered a
separate problem, already solved (e.g. see Calderoni et al 1994, 1995).

Numerical model

A preliminary step of the research has been the definition of the geometrical and elastic
features of the structural model. The scheme is an idealised one-storey building with rectangular
1igid deck; it is referred to the coordinate axes x and y, with origin G coincident to the
geometrical centre of the deck, and it is assumed to be symmetric about the x-axis. The position
of mass centre and the mass radius of gyration are assigned independently of shape and
dimensions of the deck, under the hypothesis that the mass distribution may be not uniform. The
main component of the seismic ground motion is considered to act along the y-direction, which is
called for this reason “primary direction”; the developed procedure allows to take into account
also the component acting along the x-axis (“secondary direction™), but in the present phase of
the work this possibility has been neglected The resisting elements, parallel to the axes, ate
assumed to have a bilinear elastic-perfectly plastic force-displacement relationship and to present
no out-of-plane stiffness or strength. The general procedure developed, able to assign the
stiffness of each element in such a way to obtain a required value of the global elastic
parameters, 1s described hereafter separately for the two directions.

Elements along the primary direction (y-axis)

In order to obtain given values of location of stiffness centre and total translational and
torsional stiffness of the elements oriented along this direction, a minimum number of three



independent parameters is necessary. In the two-elements models, like the one used by Goel and
Chopra 1990, the position of the elements must be considered variable and cannot coincide to the
edge of the deck This might have some influence on the inelastic response, because the
displacement due to rotation depends on the distance from the rotation centre. More common is
therefore the use of three-elements models (Tso and Zhu 1992, De Stefano et al. 1993, Chandler
et al 1996), which supply in most cases a satisfactory estimate of the inelastic response.
However, the number of resisting elements might sometimes significantly affect the ductility
demand; for this reason a more general automatic generation procedure has been developed, able
to assign the proper stiffness to any number of elements, from thiee on. For a better
correspondence to the actual buildings, in most analysed cases the system was constituted by
eight elements in the main direction, but the effect of assuming a smaller number of elements has
been investigated too.

In order to apply the procedure, according to established mathematical rules complying
with the same logic, the primary model called reference symmetric system (RSS) is firstly de-
fined (Figure 3). It is made up by a sub-system, called basic system, duplicated symmetrically
with respect to the y-axis. The elements of the basic system are themselves symmetrical about
their centre Gy, which may be considered origin of a set of local axes £, 1.
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Figure 3. The basic system and the reference symmetric system (the size of the elements
is drawn in proportion to their stiffness)

Ay

(N

transformed basic system

—
|

!

Figure 4. The fransformed basic system and the fransformed symmetric system



The RSS shown in the figure has an even number of elements; an odd number may be
obtained by positioning the sub-systems so that the two central elements coincide and by
substituting these with an unique equivalent element.

A transformed symmetric system (IS8), with a given torsional stiffness, is obtained by
applying a linear transformation to the stiffness of the elements of the basic system, which is

modified proportionally to the distance of the elements from G, and to a parameter 5, (Figure 4).
The stiffness of the generic element of the #ansformed basic system is therefore

ki =k (1B, 84) (1)

It may be easily demonstrated that such transformation do not change the total transiational
stiffness and the torsional stiffness about Gy, . It is in fact

,'z::;k:b = ;Z:;(k,'b + B] kib E.n‘b) = gkm + B; % kih E_“.b = Kb )
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being ka Ep = zk,.,, £ =0 because of the symmetry of the basic system.
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The first moment of the new distribution about Gy, 1s

Z ki G = Z} ki + Bk, ém ib Z kS + By Z k:bE.nh =, Ky, 4)
and the abscissa of the centre of rigidity of the fransformed basic system is therefore
Z:klbélh Keb
Eere = (5)
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The torsional stiffness of the transformed basic system about its centre of rigidity and that of the

TSS about G can finally be expressed as

Kéb = Keb - Kb g'csz (6)

Ko, =2 [Kéb + Kb(db —Efcm)Z] =

@
=2 [Ksb +Kb dbz -2K, db lC:»ER!:] :2Keb +2K, d.a2 "‘4[31 Keb db



It is therefore possible to obtain a TSS having a given translational and torsional stiffness
simply by selecting a whatsoever basic system with K;=0.5 K, and evaluating the coefficient /3,
as

2K, +2K,d,’ - Ko,
By = 4K, d,

(8)

An asymmetric system may be obtained from TSS by assigning a mass centre not coinci-
dent with the geometric centre G. Such system is usually called mass eccentric system (MES)
and its corresponding balanced system is the same TSS. As alternative, a further linear transfor-
mation may be applied to the whole ISS, by modifying the stiffness of each element propor-
tionally to its distance from G and to a parameter f3, (Figure 5). Once again the transformation let
the translational stiffness and the torsional stiffness about G unchanged, while the abscissa of the
centre of rigidity is related to B, by an expression analogous to Equation (5), which can be
inverted giving

8, = K, xcx
: KSG}'

©)

If the mass centre is coincident to G the asymmetric system so genetated is called stiffness
eccentric system (SES). The corresponding balanced system is obtained by moving CM to CR.

The distinction between MES and SES is considered fundamental by some authors (e.g.
Goel and Chopra 1990), while others note that most actual systems are contemporaneously mass
and stiffness eccentric (Tso and Zhu 1992). Our opinion is that the ruling patameter is not the
type of model (MES or SES) but the position of mass centre with respect to the edges of the
deck; this parameter proved to have some importance, although minor, in the elastic analyses
(Calderoni et al. 1994) and it seems logic that an analogous influence may be found in the
inelastic behaviour. Nevertheless the present research has been focused separately to MES and
SES models and the results finally obtained show that the effect of such distinction on the design
eccentricity, although perceptible, is not relevant
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Figure 5 The asymmetric system (SES} obtained by means of the last transformation




Elements along the secondary direction (x-axis)

The presence of elements oriented along the secondary direction contributes to reduce the
rotation in the inelastic range, in particular when the transversal component of the seismic
ground motion is small or it is totally neglected in the analysis. However, the analyses carried on
aim at evaluating two limit behaviours, with increased and reduced rotation, given respectively
by the elastic and the inelastic response. The absence or the early plasticization of the secondary
elements, although actually possible, can limit the reduction of inelastic rotation, which is not
safe for our purpose For this reason the utilised model has elements in the x-direction able to
provide a translational stiffness (equal to the one in the y-direction) and a torsional stiffness (in
most cases 1/5 of the total torsional stiffness, although other values have been assumed too, in
order to evaluate the influence of this parameter). A number of three elements, located
symmetrically along the x-direction has been fixed; their stiffness, necessary to comply with the
above requirements, is
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k. =k, = k,, =K, -2k, (10)

Seismic ground motion

It is well known that a proper selection of the input ground motion has a great importance
in every response analysis When one or few seismic recordings are used, large differences in
response ate to be expected. I'o overcome this problem, a probabilistic approach has been used,
ie. each stiuctimal scheme has been subjected to a set of accelerograms and statistical
inf~ hation has been extracted by the set of the results. Thirty historical Italian accelerograms
paving different characteristics (duration, peak ground acceleration and elastic response
specttum) have been selected in order to constitute a representative set of national accelerograms
(Table 1). In order to homogenise them, the recordings have been scaled so that the elastic
response specttum of each of them presents an equal value of the area subtended between (.5 and
3 seconds and the mean elastic response spectrum of the whole set has a given value (0 35 g) in
cortespondence of the period of 1 second. The mean elastic response spectrum so obtained
(Figure 6) sufficiently recalls the elastic spectrum imposed by EC8 for firm soil in areas
characterised by expected peak ground acceleration of 0.35 g

Table 1 Reference code, origin and component of the thirty selected accelerograms

Ref  Recording Comp. Ref  Recording Comp. Ref.  Recording  Comp.
code code code

32 Codroipo ew 168  Forparia ew 621  Bagnoli L ew
32 Codroipo ns 168  Forgaria ns 621  Bagnoli L ns
38 Tolmezzo ns 169  SanRocco ew 627 Merc S. Sev. ew
143 Buia ew 169  SanRocco ns 627  Merc S Sev. ns
143  Buia ns 177  Buia ew 636  Calitri ew
152  Forgaria ew 301  Patti ew 636  Calitri ns
152 Forgaria ns 301  Patti ns 643  Rionero ew
153  San Rocco ew 302  Naso ew 643  Rionero ns
156  Buia ew 302 Naso ns 644 ' Bisaccia ew

156 Buia ns 360 Cascia ew 644 Bisaccia ns
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Figure 6 Mean elastic response spectrum of the set of accelerograms

Evaluation of design eccentricity

The design procedure we are proposing consists in assigning the elements’ strength by
means of two multi-modal spatial analyses: the first one with the mass centre located in its actual
position; the second one with the mass centre displaced of a quantity ey (design eccentricity)
towards the centre of rigidity. In order to identify the best value of e, each system, having given
geometrical and inertial characteristics, has been designed many times with design eccentricity
ranging from O to 1.5 e, (being ¢, the eccentricity between mass and stiffness centre), using as
design spectrum the mean elastic response spectrum of the selected ground motions divided by a
fixed value of the behaviour factor g. The resisting schemes thus obtained have been subjected to
the set of accelerograms. In pazallel, the corresponding balanced system, in which the mass
centre has been displaced to coincide with the stiffness centre in order to obtain a purely
translational behaviour, has been designed and subjected to the ground motions Among the
output data, the attention has been focused on the largest peak ductility demand among all
elements: the value required by each seismic event has been normalised by the corresponding
value of the balanced system and a global estimate is provided by the mean value d; 5, and by the
95% fractile dj o5 of the normalised ductility demand of the thirty accelerograms. The numerical
analyses show that, when no design eccentricity is used, the maximum ductility is always
demanded by the element at the stiff edge; both parameters increase in a non linear way with the
stiffness eccentricity of the model (e g. see Figure 7), reaching values which can be very high
depending on the characteristics of the scheme The use of design eccentricity strongly reduces
this effect, although the reduction has a limit because value of e; greater than e; have a minor
effect; in this last case, indeed, the maximum ductility is often demanded by central elements, the
strength of which is not increased by the use of design eccentricity. From the relation of dj 55 and
dy 95 VEIsus ey it is possible to define the value of e; necessary to limit the ductility demand to a
given value (e g. see Figure 8). In the performed analyses the limit dj os=1.3 has been primarily
imposed, but other values have been used too in order to analyse their influence on e,
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Figure 7. Normalised ductility demand versus stiffness Figure 8 Normalised ductility demand versus design
eccentricity {design parameters: SES, {21, eccentricity (design parameters: SES, (251,
#=02, Ij=1 s, g=5) =02, T)=1s, g=5)

Numerical analyses

The above described procedure allows to evaluate the optimum value of e4 for a scheme
with assigned elastic and inertial characteristics. In order to find a general formulation, able to
provide safe values of the design eccentricity in all actual situations, we investigated the influ-
ence of the position of mass centre (ie of the type of model, MES or SES) and that of the
parameters ¢; (stiffness eccentricity), (25 (uncoupled lateral-torsional frequency ratio), 7, (uncou-
pled translational period) and ¢ (behaviour factor). In all the numerical analyses we assumed
dimensions of the rigid deck £=29.50 m and B=12.50 m, total mass corresponding to 1 t/m°, mass
radius of gyration =0.312 L. In most cases the basic system is defined by n,=4, d;=8.25 m,
£:=2.00 m, £,=6.50 m, %,=0.075 K,, k,=0.175 K,, and the rate of torsional stiffness due to the
orthogonal elements is %=0.2, although these data have been changed in a few cases in order to
check the effect of the number of resisting elements and of the contribution given by the
orthogonal elements.

For every assigned value of the above parameters, the automatic generation procedure
defines the stiffness of each element. The total stiffness of the resisting elements oriented along
the y-direction and the torsional stiffness of all elements about CR are given by

(on )
K, = mL?J K= 7, K, (1)

¥

while the rates of the torsional stiffness due to the elements along the y-axis evaluated about CR
and G are respectively

Koy =Ko (1-7,) Kooy = Koy + K, 02 (12)

These values allow to evaluate the parameters /3, and £, by means of Equations (8) and (9)
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As a first step of the study we examined the influence of ¢, on e; In all examined cases
the relation between these two parameters is about linear (e.g. see Figure 9) and can be
approximated by a straight line having equation

e, =k (e —e,) (13)

The second step consisted therefore in the search of a relation among the parameters £, ¢,
and the elastic characteristics of the scheme. Starting from a basic case (£2¢=1, Ty=1 s, ¢g=5) each
parameter has been separately varied, in the following range: (2=061t0 1.6;7,=04sto 1.8s;
g =15 to 5. Figure 10 shows the relation of k and e, versus £ for two different values of dj s
(1.2 and 1.3). It may be first of all noted that the value of dy o5 influences e, while it has a very
small effect on %; this situation has been identically found also in the analyses concerning the
variation of T, and ¢ Furthermore, it is apparent that e, grows up with €2 in an approximately
linear way, with a slope which depends on the required value of d 45 but it is independent of the
type of system. On the contrary k is nearly constant for SES and slightly decreasing as (%
increases for MES. Figure 11 and 12 show the relation of & and e, versus g and 7, respectively.
The parameter e, is practically independent of g, while & is once again decreasing as g increases,
but without perceivable differences between SES and MES. On the contrary, the effect of 7,
although not negligible, do not show a clear tendency. Finally the results obtained by varying y
from 0.001 to 0.4 and by changing the number of resisting elements are not reported in any
figure, because they are really scarcely relevant.

From the above described results we propose to express the parameters k and e, by means
of the following equations

k=225-05Q,-0lq (14)

_A

e Q,-07)L 2001L (15)

r

being Ad =d 4 —1 .
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The dependence of &k on (2 and ¢ is truly not so strong, and a possible simpler alternative
could be to give it a constant value k=1 25, The values provided by Equations (14) and (15) are
shown as dashed lines in Figures 10 to 12, confirming the effectiveness of the formulations.

Figure 13 compares the values of design eccentricity given by Equation (13) to those
evaluated by means of the numerical analyses. In nearly all cases the proposed values are greater
than those numerically calculated, showing the safety of the afore mentioned formulation. In
some cases, in particular for SES, this safety is higher, but still acceptable, and only in very few
situations, mainly for particular values of 7), the numerical 1esults are slightly larger than those
given by the formula. This is confirmed by Figures 14 and 15, which plot the actual values of
ductility demand for schemes designed with and without the proposed approach and formulation
(with A¢=0.3). It is apparent that the goal of limiting the ductility demand has been perfectly
achieved, with a partial exception for very rigid schemes (7,=0.6 s). It must be furthermore noted
that, having imposed the value 1.3 to the 95% fractile of the normalised ductility demand, the
mean value of the normalized ductility (dys,) is always close to 1, even in the case of stiff
schemes, showing that the ductility demand of asymmetric structures designed according to the
ptoposed rules and parameters is always coincident, in the mean, to that of the corzesponding
balanced schemes. We therefore propose to use dy¢s=1.3 and Ad=0.3 in Equation (15), i.e. to
assume

e, =01(Q,-07)L 2001L (16)

Some consideration may be also given to the location of the centre of strength. If the
torsional contribution of the orthogonal elements is neglected, it coincides with the mass centre.
Both the contribution of orthogonal elements and the use of design eccentricity move it toward
the stiffness centre. In particular, the proposed values of ey shifts the strength centze to a position
not far from the mid-way between the mass and stiffness centres, position which many
researchers have suggested to be optimal for a good response of the structure (e.g see Chandler
et al 1996 and De Stefano et al. 1993)

The mean increase of strength due to the proposed approach is small, comparable to that
obtained by complying with the prescriptions of seismic codes. The global overstiength, i e the
ratio of the total strength of the resisting elements in the primary direction over the strength of
those of the corresponding balanced system, is plotted in Figure 16. It is apparent the influence
of the uncoupled lateral-torsional frequency ratio: when the scheme is torsionally stiff it is
necessary just a small overstrength even in the case of relevant eccentricities, while torsionally
flexible structures require a large overstrength also for small eccentricities. In the same figure is
plotted, as a term of comparison, the overstrength obtained by satisfying a clause given by some
codes (like UBC), which require not to reduce the strength of the elements when a spatial
analysis is performed; this is equivalent to consider a design eccentricity equal to the stiffness
eccentricity (e;~e,). In this case the overstrength does not depend in a substantial way on Qy (the
curve shown is referred to Qy=1, but it is nearly coincident with those calculated for different
values of this parameter). A comparison with the previously described curves shows that such a
provision is acceptable in the case (24=1, but it is insufficient for torsionmally flexible structuies
and excessive for torsionally stiff schemes. The introduction of this prescription in seismic codes



is probably a good solution to the problem of limiting ductility demand in asymmetric buildings,
because of its simplicity, but it should be connected to explicit limitations to avoid torsional
flexibility; at the same time the use of a more exact approach, like the one proposed in this paper,
should be allowed
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Figure 16. Overstrength of systems designed according to the proposed procedure, compared to the one
obtained by using e;=e; (constant parameters: SES, =02, I,=1 s, g=5)

Conclusions

The proposed approach (use of two multi-modal analyses, the first one with the mass
centre in its nominal position and the second one with the centre displaced of a quantity, named
design eccentricity, towards the stiffness centre) appears to be a powerful tool in order to
overpass the problems connected to asymmetry, by limiting the ductility demand without
relevant increment of structural costs. The formulation of design eccentricity, here proposed, has
been tested for a wide set of values of geometrical and inertial parameters, proving a large
effectiveness. The given formula, or any simplification of it, may therefore constitute a good
basis for an improvement of the Euzropean seismic code.
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Notation
L, B dimensions of the deck along the x and y-direction
G geometrical centre of the deck
m mass of the deck
CM mass centre
"m mass radius of gyration about the mass centre
kjx stiffness of the jth element parallel to x-axis
ki stiffness of the i"" element parallel to y-axis
Vi > Xi distance of the above elements from the x and y-axis respectively
Hy , 1y number of resisting elements parallel to the x and y-axis

K. K, total lateral stiffness of the elements parallel to the x and y-axis

Kx = ijx Ky = _X{:kiy
i= =

Kagy torsional stiffness of the elements parallel to the y-axis about G
KBGy = ;kiy xiz
CR centre of rigidity

Xcr,Vcr  coordinates of CR

€ stiffness eccentricity, i.e. distance between CR and CM

Ky , Ko,  torsional stiffness of the elements parallel to the x and y-axis about CR

Ky = zij (yj ".VCR)Z Key = Zkiy (x; _xc;z)2
j=1 i=1
Ky total torsional stiffness about CR

Ky, =K, + Key



I stiffness radius of gyration about CR

k .I‘\J‘ Ky
¥ rate of torsional stiffness due to the elements parallel to x-axis
KBx
A
0
Ty, o uncoupled translational period and frequency along the x-direction
T =2 | m 2n F"E
=L | WM ==,
x \j Kx x ]‘; \\I m
T,, 0, uncoupled translational period and frequency along the y-direction
m 2r /K,
T =2n | ®,=—=.—
¥ w\/ Ky ¥ T; \ m
Tg, g uncoupled torsional period and frequency
2
mr 21 K
T — 275 » @ = — = 9
’ K, L \mr,
2y uncoupled lateral-torsional frequency 1atio
We %
g
(Dy rm .
Gy, centre of the basic system
dy distance between G and Gy,
kip stiffness of the i element of the basic system
& abscissa of the above element
Ap number of elements of the basic system
Ky total lateral stiffness of the elements of the basic system
< 1
K=k, =K,
i=l
Koy total torsional stiffness of the elements of the basic system about G,
Ky, = Zkib ‘gfb
K’ stiffness of the i element of the transformed basic system
CR, centre of rigidity of the fransformed basic system
E'crp abscissa of the rigidity centre of the rransformed basic system
Kgp total torsional stiffness of the elements of the fransformed basic system about their

stiffhess centre



